

GEORGE MUNICIPALITY

PROJECT 20 (5): UPGRADING THEMBALETHU BULK SEWER – PHASE 3 AND 4

CONCEPT & VIABILITY REPORT

REPORT NO: 1762: REV NO. 2

22 JULY 2024

PREPARED FOR:

P.O. Box 19

GEORGE

6530

GEORGE MUNICIPALITY

LUKHOZI CONSULTING ENGINEERS (PTY) LTD

8 St John's Street

PREPARED BY:

St John's Place

Dormehlsdrift

GEORGE

6529

www.lukhozi.co.za

Contact Person: K. Potgieter Tel: (044) 050 4154

Contact Person: M. Geyer Tel: (044) 801 9268

GEORGE MUNICIPALITY

PROJECT 20 (5): UPGRADING THEMBALETHU BULK SEWER – PHASE 3 AND 4 CONCEPT & VIABILITY REPORT REPORT NO: 1762 REVISION 3

29 NOVEMBER 2024

TABLE OF CONTENTS

Page No.

1.	INTRODUCTION	. 1
1.1 1.2 1.3 1.4	BACKGROUND TERMS OF REFERENCE PURPOSE OF THE REPORT PROJECT TEAM	. 1 . 2
2.	SITE DETAILS	. 2
2.1 2.2 2.3 2.4	LOCALITY ENGINEERING SURVEY GEOTECHNICAL INVESTIGATION ENVIRONMENTAL INVESTIGATION	. 1 . 1
3.	SCOPE OF WORKS	. 2
3.1 3.2	PORTION 2 PORTION 1	
4.	WAYLEAVE APPLICATION STATUS	. 4
5.	SUB-CONSULTANTS AND SPECIALIST SERVICE PROVIDERS	. 5
5.1	HEALTH AND SAFETY INVESTIGATION	. 5
6.	CONCEPT DESIGN CRITERIA	. 5
6.1 6.2 6.3	STANDARDS APPLIED. SEWER FLOW. 6.2.1 Future Development flows. SEWERS. 6.3.1 Bulk Sewer 6.3.2 Design. 6.3.3 Pipe Materials. 6.3.4 Manholes 6.3.5 Access and maintenance gravel roads 6.3.6 Main stream crossings	. 5 . 7 . 7 . 8 . 9 . 9 . 9
	6.3.7 Minor stream crossings6.3.8 Erf Connections	
7.	INFORMATION TO BE PROVIDED	11
7.1	CONCEPT AND VIABILITY STAGE	11
8.	PROCUREMENT STRATEGY	12

8.1	CONTRACTOR PROCUREMENT	
	CONSTRUCTION CONTRACT	
9.	FINANCIAL	
	AVAILABLE BUDGET	
	FIRST ORDER ESTIMATE	
9.3	CASHFLOW FORECAST	
10.	CONCLUSION	

LIST OF TABLES

Table 1: Portion 2 Estimated Bulk Gravity Sewers per concept design	2
Table 2: Portion 1 Estimated Bulk Gravity Sewers per concept design	3
Table 3: Wayleave Application Status	4
Table 4: GLS Design flows for Phase 3 and 4	6
Table 5: GLS latest design flows for Phase 3 and 4	6
Table 6: Summary of quantities	8
Table 7: Available Direct and Indirect Costs	12
Table 8: Portion 1 - Estimated required Direct and Indirect Costs	13
Table 9: Portion 2 - Estimated required Direct and Indirect Costs	13
Table 10: Cashflow Forecast	14

LIST OF FIGURES

Figure 1: Locality of the planned Phase 3 & Phase 4 bulk sewer and decommissioned The	embalethu
pump station no. 3	1
Figure 2: Portion 2 - Phase 3 and Phase 4 gravity bulk sewer (Outlined in red)	3
Figure 3: Portion 1A&B Ward 9 & Ward 21 existing bulk sewer upgrade	4

DRAWINGS

Drawing No Drawing Name		
1762-GEN-001	Bulk Sewer Phase 3&4: Portion 1 - Locality Plan	Z
1762-GEN-002	Bulk Sewer Phase 3&4: Portion 1 - Existing Services Layout	Z
1762-GEN-004	Bulk Sewer Phase 3&4: Portion 2 - Existing Services Layout Plan	P0
1762-SEW-001	Bulk Sewer Phase 3&4: Portion 1 - Bulk Sewer Layout Plan	Z
1762-RDS-001	S-001 Bulk Sewer Phase 3&4: Portion 2 – Gravel Access Roads Network Key Plan	
1762-RDS-002	S-002 Bulk Sewer Phase 3&4: Portion 2 – Road 1 Layout Plan & Longitudinal Section	
1762-RDS-003	62-RDS-003 Bulk Sewer Phase 3&4: Portion 2 – Road 2 & 2-1 Layout Plan & Longitudinal Section	
1762-RDS-004	Bulk Sewer Phase 3&4: Portion 2 – Road 3, 3-1 & 3-2 Layout Plan	
1762-RDS-005	Bulk Sewer Phase 3&4: Portion 2 – Road 1 & 2 Cross Sections	
1762-RDS-006	Bulk Sewer Phase 3&4: Portion 2 – Road 3,3-1 & 3-2 Cross Sections	

Drawing No	Drawing Name	Rev
1762-SEW-002	PORTION 2 BULK SEWER KEY PLAN	P1
1762-SEW-003	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 1 OF 7)	P1
1762-SEW-004	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 2 OF 7)	P1
1762-SEW-005	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 3 OF 7)	P1
1762-SEW-006	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 4 OF 7)	P1
1762-SEW-007	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 5 OF 7)	P1
1762-SEW-008	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 6 OF 7)	P1
1762-SEW-009	PORTION 2 BULK SEWER LAYOUT PLAN(SHEET 7 OF 7)	P1
1762-SEW-010	PORTION 1 TYPICAL SEWER DETAILS	Z
1762-SEW-010	TYPICAL SEWER DETAILS	
1762-STW-001	OVERFLOW AND STORMWATER DETAILS	
1762-STW-002	PORTION 2 : MAIN STREAM CROSSINGS : SEWER PIPE BRIDGE DETAILS	
1762-STW-003	003 PORTION 2 : MINOR STREAM CROSSING AND STORMWATER DETAILS	
1762-S-001	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 1: 1 OF 2	T1
1762-S-002	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 1: 2 OF 2	T1
1762-S-003	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 2: 1 OF 2	
1762-S-004	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 2: 2 OF 2	
1762-S-005	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 3: 1 OF 3	
1762-S-006	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 3: 2 OF 3	T1
1762-S-007	MAIN STREAM CROSSINGS: SEWER PIPE BRIDGE 3: 3 OF 3	

ANNEXURES

Annexure A	:	Project Organogram
Annexure B	:	Geotechnical Report

- Annexure C : Sewer Design Flows
- Annexure D : Civil Engineering Drawings

GEORGE MUNICIPALITY

PROJECT 20 (5): UPGRADING THEMBALETHU BULK SEWER – PHASE 3 AND 4 CONCEPT & VIABILITY REPORT REPORT NO: 1762 REVISION 3 29 NOVEMBER 2024

1. INTRODUCTION

1.1 BACKGROUND

The purpose of this Concept and Viability Report is to establish George Municipality's requirements and preferences for the concept design for the upgrading of bulk sewer mains in Thembalethu in support of the Upgrading of Informal Settlements Programme (UISP). The Phase 3 and 4 bulk sewer mains are required to accommodate upstream flow as well as future housing developments to allow fully serviceable sites and the implementation of formal housing units in the identified areas. The proposed bulk sewer forms part of the overall bulk sewer upgrades required in Thembalethu as part of the Sanitation Master Plan.

The Municipality is placed under strain when dealing with the operation and maintenance of these sewerage systems due to constant blockages by foreign matter, not only causing a financial burden but resulting in environmental spillages and increased operation and maintenance requirements. The informal areas within Thembalethu currently do not have waterborne sanitation systems and a portion of this project will address these services allowing formal development of the area by extending the current bulk network to include areas that can easily be connected to the existing sanitation infrastructure. The existing upstream bulk sewers and pump stations will be utilised, where possible sewage will be conveyed through the new bulk sewer Phase 3 and 4 to the Outeniqua Waste Water Treatment Works (WWTW).

The bulk sewer will be implemented in a phased approach subject to available funding.

1.2 TERMS OF REFERENCE

George Municipality has appointed Lukhozi Consulting Engineers (Pty) Ltd as their professional engineering service provider for the Upgrading of Thembalethu Bulk Sewer Phase 3 and Phase 4.

The scope of services under the appointment is outlined below:

- Inception, concept design, detail design, documentation & procurement and implementation of Thembalethu Phase 3 and 4 bulk sewerage Infrastructure.
- Advise on criteria that could influence the project life cycle cost significantly.
- Provide the necessary information within the agreed scope of the project to other consultants involved.

• Provision of additional services required to develop and implement the project including construction monitoring.

1.3 PURPOSE OF THE REPORT

The purpose of this report is to provide details pertaining to the concept and viability planning, design, and implementation of Thembalethu Bulk Sewers- Phase 3 and 4.

This report outlines the recommended levels of services to be installed in conformance with the minimum design standards and requirements and, serves to establish the design criteria to be applied to the project.

1.4 **PROJECT TEAM**

The parties listed below will be involved in the planning, design and implementation of this project.

Employer	George Municipality (GM)
Consulting Engineer	Lukhozi Consulting Engineers Pty (Ltd)
Geotechnical Engineers	Outeniqua Geotechnical Services
Engineering Surveyors	Joubert & Brink Surveys (Pty) Ltd
Health and Safety Agents	Xaks Consulting
Environmental Assessment Practitioner (EAP)	Cape EAPrac

Refer to **Annexure A** – project organogram, for details of the Professional teams' members.

2. SITE DETAILS

2.1 LOCALITY

Thembalethu is located within the jurisdictional boundaries of George Local Municipality of the Western Cape Province.

Coordinates of the centre of the area are 34°0'39.94" S & 22°28'38.70" E.

Access to Thembalethu is obtained via the Thembalethu interchange on the N2 national road from Knysna to Mossel Bay. The site spans along the western boundary of Thembalethu along the Schaapkop River. Access to the site is via Nelson Mandela Boulevard and residential roads, where available.

Refer to locality plan in Figure 1 below.

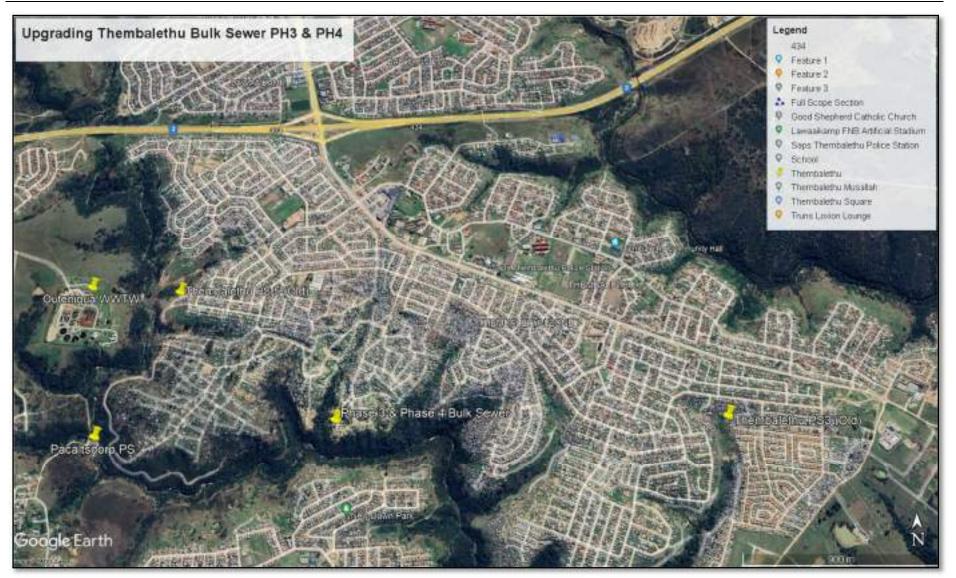


Figure 1: Locality of the planned Phase 3 & Phase 4 bulk sewer and decommissioned Thembalethu pump station no. 3

2.2 ENGINEERING SURVEY

Joubert and Brink Surveys were appointed as the engineering surveyor for this project. A LiDAR and Topographical survey were performed for areas being considered under the Thembalethu Bulk Sewers- Phase 3 and 4 scope of works. The engineering survey was completed, and the final information supplied to Lukhozi on 20 November 2023 and has been used in the concept & viability design.

2.3 GEOTECHNICAL INVESTIGATION

Outeniqua Lab and Geotechnical Services were appointed as the geotechnical engineering sub-consultant for this project. A geotechnical site investigation and report was prepared and submitted for areas being considered under the Thembalethu Bulk Sewers- Phase 3 and 4 scope of works. This is required to focus on identifying potential hazards, defining ground conditions, and offering detailed soil profiles and groundwater occurrence. The geotechnical site investigation was completed in December 2023 and the provisional soil test data was supplied on 14 December 2023. The final soil test and report was submitted on 1 February 2024. A copy of the geotechnical report is attached as Annexure B to this report.

Early indications from the soil test data show that the area will be suitable for the installation of sewers, with soils generally expected to be classified as 'soft excavation' over the majority of the route. Some trench shoring may be required in isolated areas with poor soil stability and dewatering of marshy areas may also be needed. These specifics will be confirmed through field and laboratory testing which will form part of the detailed geotechnical investigation report.

2.4 ENVIRONMENTAL INVESTIGATION

An Environmental Assessment Practitioner (EAP), Cape EAPrac, has been appointed to assess the Thembalethu Bulk Sewers- Phase 3 and 4 scope, and commence with the application to the Department of Environmental Affairs & Development Planning (DEA&DP), necessary permit/s with Department of Forestry, Fisheries and the Environment (DFFE) and necessary Water Use License Authorisation (WULA).

An existing environmental authorisation is in place for the implementation of various sanitation infrastructure in Thembalethu, including the Phase 3 & 4 bulk sewers. However, any change to the scope or alignment of the authorisation will require amendment.

The EAP, fresh water ecologist and other specialists undertook a site inspection on 1 November 2023, to determine the environmental sensitivity in relation to any potentially concerning environmental features.

CAPE EAPrac completed the Notice of Intent (NOI) and submitted it to the DEA&DP on 1 December 2023. A feedback letter with respect to the NOI letter was received from DEA&DP on 26 January 2024. The Department indicated that a Part 1 amendment to the existing Environmental Authorisation (EA) can be applied for if the proposed amendment will not change the scope of a valid environmental authorisation, nor increase the level or nature of the impact, which impact was initially assessed and considered when an application was made for an environmental authorisation; or relates to the change of ownership or transfer of rights and obligations. They further indicated that since the proposed amendment (i.e. this Phase 3 & 4) will change the scope of the authorisation (i.e. new pipeline route not currently in the authorisation), regardless of what the reason is, a Part 1 amendment process cannot be followed for this change. DEA&DP is therefore of the opinion that a Part 2 amendment should be applied for instead.

Further environmental investigation and specialist studies will proceed as required by DEA&DP and a Part 2 amendment which will identify any environmental concerns that may affect the implementation of the Thembalethu Bulk Sewers- Phase 3 and 4 scope. This will be further addressed as the detail design stage will proceed.

Necessary adjustments to the designs will be made based on the final findings of the Basic Assessment if required.

3. SCOPE OF WORKS

3.1 PORTION 2

The Phase 3 and Phase 4 bulk sewers will serve the following areas that will tie into an existing 250mm Diameter bulk sewer line, situated south and south-east of the UISP Areas 5 & 6A and will gravitate to the existing Pacaltsdorp Sewer Pump Station 1. This pump station transfers the sewage to the Outeniqua WWTW, see Figure 2 below. This scope of work is seen as Portion 2.

During the detailed design stage it will be determined if the existing 250mm diameter bulk sewer line requires an upgrade to accommodate the new bulk sewer that will service Phase 3 and Phase 4 internal sewers.

Phase	Area	Anticipated Length	Planned Pipe Dia
3	Area 2 and the remainder of the bulk services required to fully service Area 5, 6A and 6BOld All Brick Quarry Area	Approx. 1460m Approx.	200mm (160mm was the proposed diameter per the Municipality's project appointment. This diameter is regarded as
		970m	too small for bulk sewer reticulation for this area due to the small hydraulic loading and the nature and characteristics of the sewage)
Total est Gravity S	timated length of Planned Bulk	2 430m	

Table 1: Portion 2 Estimated Bulk Gravity Sewers per concept design

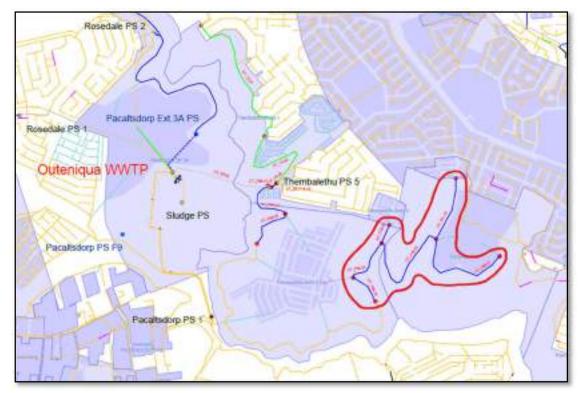


Figure 2: Portion 2 - Phase 3 and Phase 4 gravity bulk sewer (Outlined in red)

3.2 PORTION 1

A portion of the existing gravity sewer near the old, decommissioned Thembalethu sewer pump station no. 3 must be connected to the existing gravity sewer network to the western embankment of Ward 21 existing bulk sewer. This portion of the work is situated east of the planned Phase 3 and Phase 4 bulk sewer lines, but in totality creates the western bulk sewer line. Refer to Figure 3 below.

This portion of the scope of construction works will include the following as a minimum:

- Sewer connection to existing gravity sewer
- Stream crossing
- Construction of associated manholes
- Bulk earthworks and stabilization of erosion donga
- Stormwater crossing for future draining of Siyabulela and Eluxolweni Streets.

This scope of work is currently under construction, as part of T/ING/008/2020: The Appointment of Ad-Hoc Civil Engineering Contractors for a period of three years.

able 2. Portion 1 Estimated bulk Gravity Sewers per concept design				
Portion	Area	Anticipated Length	Planned Pipe Dia	
1A	Ward 9	316 m (200 mm Dia) 50 m (355 mm Dia)	200 mm and 355 mm Dia as per the existing pipeline with steeper falls of minimum 1 in 150	
1B	Ward 21	120 m (355 mm Dia)	355 mm Dia as per the existing pipeline with steeper falls of minimum 1 in 150	

 Table 2: Portion 1 Estimated Bulk Gravity Sewers per concept design

Portion	Area	Anticipated Length	Planned Pipe Dia
Total estimated length of Planned Bulk Gravity		486m	
Sewer for Portion 1			

Legend:

Existing bulk sewer with poor gradient New bulk sewer with min fall 1 in 150

Figure 3: Portion 1A&B Ward 9 & Ward 21 existing bulk sewer upgrade

4. WAYLEAVE APPLICATION STATUS

Planning wayleave applications to be submitted where applicable. Table 3 below indicates the status and outcome of each application.

Construction wayleaves will be applied for prior to commencing with construction by the applicable contractor/s.

Service Provider	Service Affected	Comments
George: Electricity Department	Yes	Must be notified 5 days prior any construction. Electrical Representatives to inspect area prior excavation. Form to be filled out.
George: Civil Engineering Services	Yes	Sewer and water affected.
George: Environmental Services	Yes	Check if yellow woods or other protected trees will be in the way of new bulk sewer.

Table 3: Wayleave Application Status

5. SUB-CONSULTANTS AND SPECIALIST SERVICE PROVIDERS

5.1 **HEALTH AND SAFETY INVESTIGATION**

1762

George Municipality has appointed Xaks Consulting as the H&S Agent on 24 May 2023 for this project and will be involved during all required stages of the project.

The Health and Safety Agent is required to:

- a) Attend design meetings.
- b) Prepare baseline risk assessment and site-specific health and safety specification. A draft of the baseline risk assessment and site-specific health and safety specification was completed on 14 August 2023. This baseline risk assessment and site-specific health and safety specification will have to be reviewed and finalised during the compilation of the tender document for construction for portion 2.
- c) Review the bill of quantities to confirm there are sufficient items and acceptable quantities and pricing prior to and post pricing.
- d) Evaluate and approve the successful Contractor's Health and Safety Plan, which will be prepared in response to the risk assessment and specification.
- e) Prepare and apply for a Construction Work Permit if required.
- f) Attend monthly site meetings and perform monthly audits (minimum two site visits per month).
- g) Prepare and submit monthly Health and Safety audit reports.
- h) Manage the Contractor's compliance with his Health and Safety Plans, the Health and Safety Specifications and the OHS legislation.
- i) Prepare and submit a Health and Safety close-out report on completion of both construction contracts.
- i) Accept the duties and responsibilities of the Client as set out in the Construction Regulations.

6. CONCEPT DESIGN CRITERIA

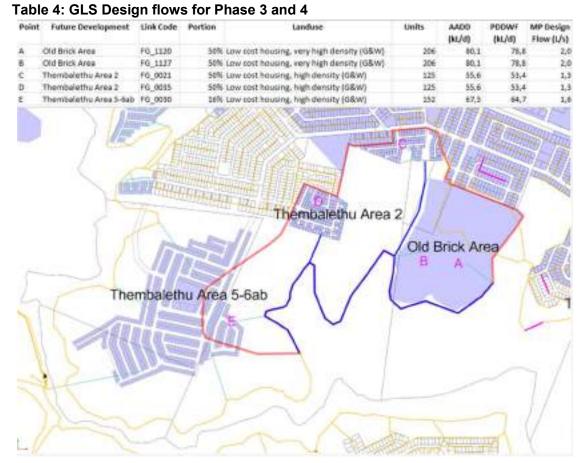
6.1 STANDARDS APPLIED

The following references will be used for the design of the sewerage reticulation network:

- The Neighbourhood Planning & Design Guide: Section K Sanitation (Red Book • 2019)
- SANS 10400-P: Drainage
- George Municipality Civil Engineering Services: Civil Engineering Standards & Requirements for Services (Updated January 2009)

6.2 **SEWER FLOW**

The Instantaneous Peak Wet Weather Flows (IPWWF) for each of the drainage areas have been calculated using the sewer flow and peak factor method contained in section K.4 of the Human Settlements Planning and Design Guidelines (Red Book 2019). The following was allowed for in the design.


•	Unit Hydrographs	:	UH 4	(PDDWF)
•	Peak factor	:	2.0	(IPDWF)

•	Groundwater infiltration rate	:	0.03	(l/min/m/m Ø)
•	Allowance for stormwater ingress	:	50 %	(IPWWF)

Refer to **Annexure C** attached to this Report for the design flow calculations for the bulk sewer as determined by Lukhozi.

6.2.1 Future Development flows

Table 4 provides a summary of the accumulated flows per drainage areas to a collection point that will drain via the proposed bulk sewers titled phase 3 and 4 in Thembalethu from the recent Sanitation Master Plan.

In accordance with the sanitation master plan, the theoretical design flows of the gravity sewer is indicated in **Table 5** below.

Drainage Area	Model Type	MP item Type	MP Iten No	Project No	Project Description	MP Description	Design Flow Design Flow Unit
Outenique WWTW	Gravity	FN .	OT_F81.00	RET_OT_060	Construct Thembalethu (2) outfall server	New Gravity	1.35(1/1
Outenique WWTW	Gravity	FN .	OT_F82.00	RET_OT_060	Construct Thembalethu (2) outfail server	New Gravity	1.12 1/1
Outenique WWTW	Gravity	FN	07_F99.01	RET OT 061	Construct Old Brick Area outfall server	New Gravity	2.03 L/s
Outeriqua WWTW	Granity	EN.	OT_F95.02	RET_07_060	Construct Thembalethu (2) outfall sewer	New Gravity	5.41 L/s
Outenique WWTW	Gravity	FM	OT_F99.03	RET_OT_OGD	Construct Thembalethu (2) outfall server	New Gravity	6.76 L/s
Outeniqua WWTW	Gravity	FM	OT P99.04	RET_OT 060	Construct Therabalethu (2) outfall server	New Gravity	8.37 L/s

From the design flow calculations, as indicated by GLS, it can be seen that the future design flows are in the order of 1.3 to 2.0 l/s for the various areas with a maximum total design flow of 8.2l/s to 8.4 l/s. The design flow calculations as determined by Lukhozi (including an additional 50% stormwater infiltration) are in the order of 2.04 l/s to 6.75 l/s with a maximum total design flow of 13.5 l/s. The design flows are higher than the calculations as seen on the master planning reports, however this is mainly due to the stormwater infiltration, of 50%, designed for by Lukhozi. When working on an average stormwater infiltration rate of 15% the flows compare closer with the flows as calculated by GLS i.e. in the order of 1.96 l/s to 5.2 l/s with a maximum total design flow of 10.35 l/s. We find the flow rates determined by GLS, considering the actual extensive stormwater infiltration in George, as insufficient. It is necessary to determine the peak flow when sizing the proposed bulk sewer infrastructure and we therefore recommend the maximum design flow rate of 13.5 l/s, as calculated by Lukhozi, be used for design purposes.

6.3 SEWERS

6.3.1 Bulk Sewer

The bulk sewers will be installed at an absolute minimum gradient of 1 in 150 per the Municipality's requirements.

The site is not a "greenfield" site since there are informal dwellings that exist along most of the planned bulk sewers proposed route. It can therefore be classified as "brownfield" site. This will mean some informal dwellings will have to be moved to temporary positions during construction to enable the installation of the bulk sewer pipelines as can be seen on the concept design layouts attached to the report. Refer to Annexure D. The exact scope of dwellings to be relocated is unknown and will be determined during detail design and the construction stages.

In addition to the extend of the informal dwellings that are restricting access and construction, benching of steep sloped areas will be required to allow access, and create workable platforms and allow maintenance of the bulk sewer pipelines in future. Sufficient allowance will be made in the tender document to perform this activity ahead of construction. Reinstatement and rehabilitation will be required of all disturbed areas. See heading 6.3.5 of this report discussing the access requirements to construct the bulk sewer pipeline.

The proposed bulk sewers will be positioned along the boundaries of existing informal areas, to allow drainage of the areas below gradients of 1 in 25. However, it will not be possible to drain all the existing informal dwellings. Some of these dwellings are developed at embankments steeper than 1 in 25, where the Municipality does not allow formal development. It is recommended, that these dwellings also be relocated to formal areas as part of the Thembalethu Upgrading of Informal Settlement Programme(UISP) for the area, by the Housing Department.

Single lane stop and go traffic will be created during construction to allow residents access to their properties during the construction phase. The necessary Traffic Management Plan (TMP) and traffic accommodation allowances will be made in the tender document and Bill of Quantities (BoQ) for this. Re-instatement of existing roads, stormwater, water and sewer reticulation will form part of the works where required.

The anticipated length of bulk sewer and manholes to be constructed are indicated in Table 6 below.

Phase	Estimated Sewer Pipe Length (m) / Dia (mm)	Estimated Manholes (No.)
3 (Pipeline A from SMH A34 to SMH A61 including pipelines B and C see drawings Annexure D)	Approx. 1460 (200mm Dia)	53
4 (Pipeline A from SMH A1 to SMH A34 see drawings Annexure D)	Approx. 970 (200mm Dia)	34
SUB-TOTAL: PORTION 2	2 430	87
Portion 1A	316m (200mm Dia) 50m(355 mm Dia)	11
Portion 1B	120m(355 mm Dia)	6
SUB-TOTAL PORTION 1	486	17
TOTAL	2916	104

Table 6: Summary of quantities

6.3.2 Design

The bulk sewers are designed to the following standards:

•	Minimum design pipe velocity velocities are between 0.7-1.5m/s)	:	0.7 m/s (design flows calculated
•	Maximum full pipe velocity between 1.3-3.5m/s)	:	3.5 m/s (0.8D full depth velocities are
•	Minimum cover to pipes	:	1.0 m below finished road level 0.8 m below finished ground level.
•	Maximum depth	:	4.0 m below finished ground level
•	Maximum manhole spacing	:	80 m
•	Minimum pipe size	:	200 mm diameter
•	Minimum Erf Connection size	:	110 mm diameter
•	Minimum gradient sewer main requirements)	:	1:150 (per George Municipality
•	Maximum gradient sewer main	:	1:25

The sewerage reticulation will be designed according to the minimum diameters and gradients shown.

6.3.3 Pipe Materials

Sewer mains will be uPVC Class 34 heavy-duty solid wall complying with SANS 1601, with a pipe stiffness of 400 kPa and smooth inner and outer walls complete with integral sockets, joints, and rubber seal rings.

All fittings will comply with SANS 791.

6.3.4 Manholes

Sewer manholes are to be constructed using 1.0 m diameter precast concrete rings to depths in accordance with the designs and drawings. Manholes deeper than 1.5 m will be reduced to 0.75 m diameter precast rings up to a depth of 1.5 m and 1.0 m diameter precast rings for the rest of the depth. Heavy duty precast concrete type manhole cover and frames will be used for all manholes constructed in the roadways. The manhole cover for sewers with diameter 315 mm Diameter and below will be standard concrete manhole covers. The manhole cover for sewers with diameter above 355 mm Diameter will be specially made security concrete manhole covers to prevent the public from tampering with manholes.

Finished manhole cover levels will be flush with road level in roadways, 50 mm above finished ground level in road reserves and 500 mm above finished ground level in open spaces.

Precast manhole sections will comply with SANS 1294.

6.3.5 Access and maintenance gravel roads

The existing informal gravel access roads, where practically possible, will be used to develop the Thembalehtu Phase 3 and 4 bulk sewers. However, due to the topography of the Thembalethu Phase 3 and 4 with deep erosion areas, dongas etc as well as the minimum gravity falls required for the bulk sewer, new access from the existing informal access roads will have to be constructed to create access and platforms for construction of the new bulk sewer for Portion 2. This will be required along the whole length of the new bulk sewer alignment which mainly follows all along the low-lying contours of the Thembalehtu Phase 3 and 4 areas.

It is estimated that the construction width of average of between 8-15m will be required to construct these access roads and platforms. In extreme cases the construction width could be as wide as a maximum of 25m due to cutting into the disturbed informal areas. This will be created to prevent excessive fill of the undisturbed an existing vegetate areas along the gravity pipeline. To prevent extreme wide cutting into informal and disturbed embankments the construction of gabions and reno mattresses may be considered during construction to prevent erosion of these embankments. Storm water will have cross the access roads at positions where the access roads are in fill and at low points where the storm water will have to be discharged from the gravel access roads in a controlled manner by means of gabions and mattresses. This is to prevent erosion downstream of the roads and bulk sewer pipeline

The final access roads widths will be between 3.5-4.5m wide and will be used by the Municipality's maintenance team for routine maintenance of the bulk sewer in future. The details for these access roads are shown on the drawings found in Annexure D of this document.

6.3.6 Main stream crossings

Due to the topography of Thembalethu and Skaapkop River that flow at the foot hills, various minor and main streams commence within the settlement until it reaches the river.

Because the proposed new gravity sewer follows the lowest possible contour line to obtain maximum drainage, three(3) main stream crossings will have to be crossed and

accommodated in the design along the length of the bulk sewer pipelines. The sewer pipelines will have to cross these main stream crossings by means of sewer pipe bridges as indicated on the layout and long section drawings.

It is proposed that the main stream and/or river crossings be constructed with reinforced concrete bridge structures. The detail for these crossings is shown on the stream crossings and stormwater detailed drawings found in Annexure D of this document.

The reasons for proposing reinforced concrete bridge structures are as follows;

- a) Concrete is renowned for its exceptional durability, with concrete exhibiting resistance to corrosion, fire, and external forces. They can withstand challenging environments and provide long-lasting service life, reducing maintenance and replacement costs.
- b) Concrete possess excellent structural strength, enabling it to bear heavy loads and resist deformation under pressure.
- c) Properly designed concrete mixes can be resistant to chemical attacks, such as sulphur or acidic substances, making them suitable for a wide range of applications, including sewer systems and industrial environments.
- d) Concrete offers a reliable and cost-effective solution due to its longevity and minimal maintenance requirements. It requires fewer repairs and replacements compared to alternative materials, resulting in reduced lifecycle costs.
- e) It is robust and will last for years as can be seen at other concrete pipe bridges in the Thembalethu area.
- f) The bridge structure can be designed in such a way that the bulk sewer pipe can be safely supported within the concrete bridge structure with concrete lids supported over its entire length. This can protect the pipe against vandalism and also allow pipe replacement by removing the concrete lids with lifting equipment should maintenance be required in future.

Steel bridge structures were considered but are not recommended due to the following reasons;

- a) Steel in the Thembalethu area is prone to vandalism and/or theft.
- b) Steel is not resistant to chemical attacks where leaks can occur, such as sulphur or acidic substances, making them unsuitable for this installation.
- c) The main disadvantage of steel bridges, compared to concrete, is that they corrode under the action of the atmosphere, easily rust, and have high maintenance costs, which are expensive in comparison to concrete bridge structures.
- d) Steel bridges have design limitations, which can make them unsuitable for certain applications, such as long-span bridges and high-load bridges.
- e) Some people may find steel bridges to be unattractive or visually intrusive, particularly in scenic or historic areas.
- f) Steel bridges require ongoing maintenance and inspections to ensure their safety and structural integrity over the long term.

Pipe and/or rectangular culverts are proposed for the minor stream crossings. The detail for these minor crossings will also be designed during the detailed design stage.

6.3.7 Minor stream crossings

Due to the topography of Thembalethu and Skaapkop River that flow at the foot hills, various minor and main streams commence within the settlement until it reaches the river.

Because the proposed new gravity sewer follows the lowest possible contour line to obtain maximum drainage, various minor stream crossings will also have to be crossed and accommodated in the design along the length of the bulk sewer pipeline. At these various minor stream crossings, the sewer pipelines will have to be protected from being undermined or scoured away by stormwater by means of stormwater protection measures as indicated on the drawings.

Piping of stormwater is proposed above or below the new bulk sewer pipelines. The detail of these minor stream crossings is detailed under the drawings found in Annexure D of this document. The inlets and outlets to these stormwater piped structures will be protected by a combination of soil rip-rap, gabion baskets and reno mattresses where required, to prevent erosion. It is recommended that the exposed faces of these baskets and mattresses be protected by means of "shotcrete"/gunite from vandalism as well as theft experienced in the Thembalethu area.

6.3.8 Erf Connections

Erf connections (if/where required) will be constructed for each erf indicated on the drawings and will comprise of 110 mm uPVC pipe. Typically, erf connections extend 1.0 m into the erf boundary however, this is a brownfields project with established homes with concrete block boundary walls, fencing, retaining block walls etc. The Employer should therefore consider revising this standard to have the erf connection terminate just outside the boundary of the erf, to avoid any potential damage that may occur to this privately owned infrastructure.

Each erf will receive a single erf connection from the main sewer and where feasible, will be positioned in a manner that aligns itself with the existing sewers, septic / conservancy tanks (if any) to allow for ease of connection.

Female stop end pieces to be solvent welded to the ends of erf connection pipes after the required air testing has been carried out.

The locations of all sewer erf connections are to be marked with No. 8 gauge wire or 5mm Co-Polymer non-biodegradable rope. The wire/rope must be attached to a brick placed at the level of the upper end of the connection and is to extend 0.5 m above the ground.

7. INFORMATION TO BE PROVIDED

For the purposes of this project, Lukhozi Consulting Engineers will provide the following information:

7.1 CONCEPT AND VIABILITY STAGE

Preliminary design layout plans showing known existing services based on information gathered through desktop exercises and surveys together with an indication of the proposed works. Separate drawings have been created for each of the proposed work Portions.

Typical details pertaining to the sewer manholes, trench details, erf connections, bridge crossings, stormwater and road crossing details have been created.

The above drawings are included in **Annexure D** of this document.

8. PROCUREMENT STRATEGY

8.1 CONTRACTOR PROCUREMENT

To ensure the best possible standard of work during the implementation of this complicated project, it is recommended to procure a single Contractor with the highest CIDB grading possible linked to the value of the contract (a minimum 6 CE in this instance). This strategy will allow a high level of accountability, quality of work, and financial security during the implementation phase. Participation Goal requirements could then be achieved by securing various sub-contractors who would report to the main contractor.

Due to limited budget for funding of this project, the Employer may decide if the scope of works will be split the into separate contracts with each main contract being administered independently. This strategy attracts a higher risk of failure due to the inexperience and financial reserves of contractors with lower CIDB gradings.

Each of the contracts will be subject to the conditions set out below.

8.2 CONSTRUCTION CONTRACT

The construction contract will be prepared in accordance with the relevant legislation and George Municipality's supply chain management policy and will consist of the following:

- The format of the Tender / Contract will be prepared in accordance with George Municipality's standard tender document and checked for compliance with SANS10845.
- The contract will be advertised on the online tender bulletins with the relevant CE CIDB grading depending on the estimated value of construction and applicable newspapers.
- Preference scoring will be applied in accordance with the prevailing Preferential Procurement Policy at the time of tender.
- Functionality will be used as a prequalifying criterion.
- The form of contract will be the SAICE General Conditions of Contract for Construction Works, Third Edition, 2015.
- A re-measurable (Bill of Quantities) pricing strategy will be used.
- SANS1200 Construction Standards as amended will apply.

9. FINANCIAL

9.1 AVAILABLE BUDGET

The cost breakdown, provided in table 7 below, of the available budget is based on the provisional budget as previously provided by George Municipality as part of the project appointment. The costs are summarised in Table 7 below.

 Table 7: Available Direct and Indirect Costs

ITEM	DESCRIPTION	PROVISIONAL BUDGET (R)
1	Direct Construction Costs (Client's estimate) (Including Contingencies and Escalation)	R8 200 000.00
2	Indirect Costs	

ITEM	DESCRIPTION	PROVISIONAL BUDGET (R)
2.1	Percentage Fee	R894 168.00
2.2	Construction Monitoring	R600 000.00
2.3	Sub-Consultants	R600 000.00
2.4	Reimbursable expenses	R0.00
2.5	Total Indirect Costs	R2 094 168.00
		D 40,004,400,00
3	TOTAL DIRECT + INDIRECT COSTS (EXCLUDING VAT)	R10 294 168.00

9.2 FIRST ORDER ESTIMATE

2.3

2.4

2.5

3

Sub-Consultants

Reimbursable expenses

Total Indirect Costs

The cost breakdown of the required budget is based on actual estimates for Portion 1 as well as first order estimates for Portion 2.

The estimate for Portions 1A&B is summarised in Table 8 below.

ITEM	DESCRIPTION	PROVISIONAL BUDGET (R)
1	Direct Construction Costs (EA's estimate) (Including Contingencies and Escalation. Excl. VAT)	R4 063 880.00
2	Indirect Costs	
2.1	Percentage Fee	R447 467.00
2.2	Construction Monitoring	R274 428.00

Table 8: Portion 1 - Estimated required Direct and Indirect Costs

The first order estimate for Portion 2 (the main scope) are summarised in Table 9 below.

Table 9: Portion 2 - Estimated required Direct and Indirect Costs

TOTAL DIRECT + INDIRECT COSTS (EXCLUDING VAT)

ITEM	DESCRIPTION	PROVISIONAL BUDGET (R)
1	Direct Construction Costs (EA's first order estimate) (Excluding Contingencies and Escalation)	R9 600 000.00
2	Indirect Costs	
2.1	Percentage Fee	R908 068.50
2.2	Construction Monitoring	R550 000.00
2.3	Sub-Consultants	R400 000.00
2.4	Reimbursable expenses	R0.00
2.5	Total Indirect Costs	R1 858 068.50
3	TOTAL DIRECT + INDIRECT COSTS (EXCLUDING VAT)	R11 458 068.50

Note the direct cost for Portion 2 excludes;

- i. Contingencies
- ii. Contract Price Adjustment (CPA)

R200 000.00

R921 895.00

R4 985 775.00

R0.00

- iii. The stream/river crossings via bridges and culverts as well as erosion protection structures required.
- iv. Relocation of informal dwellings and "starter packs" housing etc.

9.3 CASHFLOW FORECAST

The estimated cashflow forecast for the required indirect and direct costs for the complete scope of work is summarised per financial year in Table 10 below.

FINANCIAL YEAR	ESTIMATED INDIRECT EXPENDITURE (R)	ESTIMATED DIRECT EXPENDITURE (R)	ESTIMATED INDIRECT AND DIRECT EXPENDITURE (R)
2022/23	R22 354,20	R0,00	R22 354,20
2023/24	R1 756 000,00	R4 063 880,00	R5 819 880,00
2024/25	R1 001 609,30	R9 600 000,00	R10 601 609,30
TOTAL BUDGET (EXCLUDING VAT)	R2 779 963,50	R13 663 880,00	R16 443 843,50

Table 10: Cashflow Forecast

10. CONCLUSION

In terms of the project brief, Lukhozi Consulting Engineers (Pty) Ltd is appointed as the Consulting Engineer to implement the Phase 3 & 4 Thembalethu bulk sewer which entails the installation of the bulk sewer manholes and related pipe bridge structures to drain the proposed future housing developments to allow fully serviceable sites and the implementation of formal housing units in the identified areas.

The designs have progressed sufficiently to allow for the completion of the concept and viability design report as per the relevant standards and specifications.

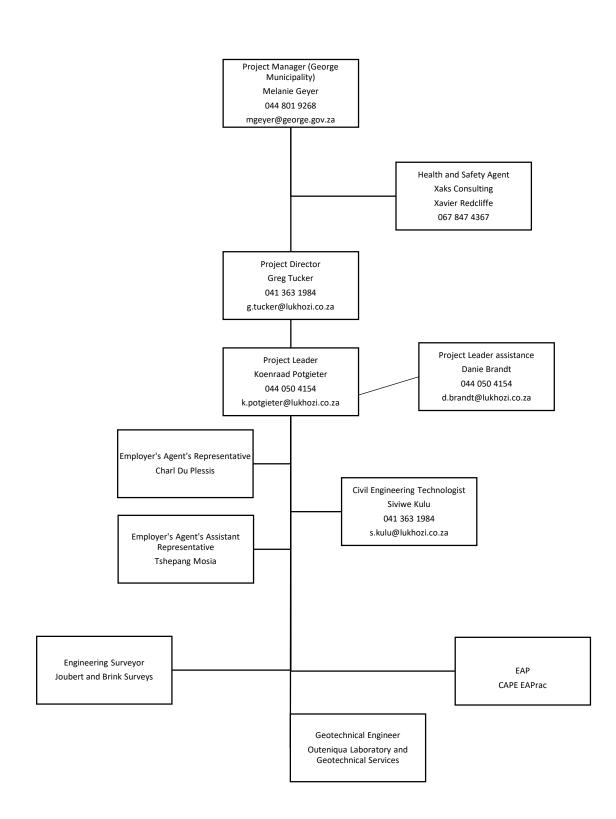
The potential additional sewer flow that will be added to the sewer network and wastewater treatment works from the 'Phase 3 & 4' project equates to 584.6 kl/day.

It is further recommended that the George Municipality:

- Confirm the funding availability.
- Approve this report and provide instruction to commence with the detailed design stage.

KOENRAAD POTGIETER (Pr Tech Eng) PROFESSIONAL ENGINEERING TECHNOLOGIST

GREG TUCKER (Pr Eng, Pr CPM) MANAGING DIRECTOR


for LUKHOZI CONSULTING ENGINEERS (PTY) LTD

LUKHOZI CONSULTING ENGINEERS (PTY) LTD

8 St John's Street St John's Place Dormehlsdrift **GEORGE** 6529 www.lukhozi.co.za Tel: 044 050 4154

Date: 14 June 2024

ANNEXURE A
PROJECT ORGANOGRAM

ANNEXURE B

GEOTECHNICAL REPORT

ANNEXURE C SEWER DESIGN FLOWS ANNEXURE D DRAWINGS

DOCUMENT CONTROL SHEET

- CLIENT: George Municipality
- JOB NO: 1762

PROJECT: Thembalethu Bulk Sewer Phase 3 and 4

TITLE: Concept & Viability Design Report

	Prepared By	Reviewed By	Approved By
ORIGINAL	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE

REVISION 1	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE

REVISION 2	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE

REVISION 3	NAME S Kulu	NAME G Tucker	NAME K Potgieter
DATE 2024/11/29	SIGNATURE	SIGNATURE	SIGNATURE 2024/11/29

This report, and information or advice which it contains, is provided by LUKHOZI CONSULTING ENGINEERS (PTY) LTD solely for internal use and reliance by its Client in the performance of LUKHOZI CONSULTING ENGINEERS (PTY) LTD duties and liabilities under its contract with the Client. Any advice, opinions, or recommendations within this report should be read and relied upon only in the context of the report as a whole. The advice and opinions in this report are based upon the information made available by LUKHOZI CONSULTING ENGINEERS (PTY) LTD at the date of this report and on current standards, codes, technology and construction practices as at the date of this report. Following final delivery of this report to the Client, LUKHOZI CONSULTING ENGINEERS (PTY) LTD will have no further objective and why to advice the Client on any matter individual development of facting the information end to the client. This report is this report. construction practices as at the date of this report. Following that delivery of this report to the Client, LUKHOZI CONSULTING ENGINEERS (PTY) LTD will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice in this report. This report has been prepared by LUKHOZI CONSULTING ENGINEERS (PTY) LTD in their professional capacity as Consulting Engineers. The contents of the report do not, in any way, purport to include any matter or legal advice or opinion. This report is prepared in accordance with the terms and conditions of the LUKHOZI CONSULTING ENGINEERS (PTY) LTD contract with the Client. Regard should be had to those terms and conditions when considering and/or placing any reliance on this report. Should the Client wish to release this report to a Third Party for that party's reliance, LUKHOZI CONSULTING ENGINEERS (PTY) LTD may, at its discretion, agree to such a release provided that that: -

- (a) (b)
- LUKHOZI CONSULTING ENGINEERS (PTY) LTD's written agreement is obtained prior to such release, and By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against LUKHOZI CONSULTING ENGINEERS (PTY) LTD and LUKHOZI CONSULTING ENGINEERS (PTY) LTD, accordingly, assume no duties, liabilities or obligations to that Third Party, and
- LUKHOZI CONSULTING ENGINEERS (PTY) LTD accepts no responsibility for any loss or damage incurred by the Client or for any conflict of LUKHOZI CONSULTING ENGINEERS (PTY) LTD interests arising out of the Client's release of this report to the Third Party. (c)

GEOTECHNICAL REPORT

PROPOSED UPGRADES FOR THE THEMBALETHU BULK SEWER – PHASE 3 AND 4, GEORGE MUNICIPALITY

24 January 2024 (Rev 0)

Prepared by: OUTENIQUA GEOTECHNICAL SERVICES 23 CLYDE ST KNYSNA 6571

Prepared for: LUKHOZI CONSULTING ENGINEERS ST JOHN'S PLACE 8 ST JOHN'S STREET DORMEHLSDRIFT GEORGE 6529

Ref No: 2023\Lukhozi\ Thembalethu Bulk Sewer – Phase 3 And 4 George\Report\Geotech Report 24.1.2024 Rev0

Report review history:

Revision No	Date	Prepared by:	Reviewed by:	Approved by:
		I Paton Pr Sci Nat Pr Tech Eng	S Ntanzi BSc Geol	I Paton Pr Sci Nat Pr Tech Eng
0	24.1.2023	Â		AN

Authors qualifications and affiliations:

lain Paton has post graduate degrees in Geology and Geotechnical Engineering and has over 25 years' experience in the mining, energy and construction industries. Iain Paton is a registered geotechnical professional with the Engineering Council of South Africa (ECSA) and the South African Council for Natural and Scientific Professions (SACNSP). Iain Paton is a member of the Geotechnical Division of the South African Institute of Civil Engineering (SAICE), South African Institute of Engineering and Environmental Geologists (SAIEG), the and the Institute of Municipal Engineering of South Africa (IMESA).

Declaration of independence:

The authors of this report are independent professional consultant with no vested interest in the project, other than remuneration for work associated with the compilation of this report.

General limitations:

- 1. The investigation has been conducted in accordance with generally accepted engineering practice, and the opinions and conclusions expressed in the report are made in good faith based on the information at hand at the time of the investigation.
- 2. The contents of this report are valid as of the date of preparation. However, changes in the condition of the site can occur over time as a result or either natural processes or human activity. In addition, advancements in the practice of geotechnical engineering and changes in applicable practice codes may affect the validity of this report. Consequently, this report should not be relied upon after an eclipsed period of one year without a review by this firm for verification of validity. This warranty is in lieu of all other warranties, either expressed or implied.
- 3. Unless otherwise stated, the investigation did not include any specialist studies, including but not limited to the evaluation or assessment of any potential environmental hazards or groundwater contamination that may be present.
- 4. The investigation is conducted within the constraints of the budget and time and therefore limited information was available. Although the confidence in the information is reasonably high, some variation in the geotechnical conditions should be expected during and after construction. The nature and extent of variations across the site may not become evident until construction. If variations then become apparent this could affect the proposed project, and it may be necessary to re-evaluate recommendations in this report. Therefore, it is recommended that Outeniqua Geotechnical Services is retained to provide specialist geotechnical engineering services during construction in order to observe compliance with the design concepts, specifications and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. Any significant deviation from the expected geotechnical conditions should be brought to the author's attention for further investigation.
- 5. The assessment and interpretation of the geotechnical information and the design of structures and services and the management of risk is the responsibility of the appointed engineer.

Table of Contents

1.	Intro	duction1
	1.1	Background information1
	1.2	Scope of work1
	1.3	Available information1
2.	Site d	escription2
3.	Meth	ods of investigation7
4.	Resul	ts of the site investigation7
	4.1	Regional geology7
	4.2	Local soil and rock types
	4.3	Groundwater
	4.4	Insitu tests
	4.5	Lab tests14
5.	Geote	echnical assessment
	5.1	Groundwater, permeability and site drainage15
	5.2	Excavations and natural slope stability15
6.	Reco	nmendations
7.	Concl	usions

List o	f Fig	jures
--------	-------	-------

Figure 1: Site locality map2
Figure 2: Topographic map of the area showing the proposed bulk sewer lines2
Figure 3: Aerial photo of the site area3
Figure 4: Gravel access roads on the site4
Figure 5: Footpaths on site4
Figure 6: Typical site conditions5
Figure 7: Existing stormwater pipe culvert near TP45
Figure 8: Old quarry area on site6
Figure 9: Mounds of soil associated with the old mining activities
Figure 10: Erosion dongas commonly seen on the site7
Figure 11: Geological map of the area8
Figure 12: Exposure of weathered granite near site9
Figure 13: Test pits conducted on site10
Figure 14: Typical soil profile observed in the area10
Figure 15: Brick rubble fill encountered at TP111
Figure 16: Typical soil types exposed at TP512
Figure 17: Geotechnical map12
Figure 18: Summary of the soil profiles13
Figure 19: Particle size distribution14

List of Tables

Table 1: Summary of test pit data (layer thickness in mm)	13
Table 2: Summary of Foundation Indicator tests	14
Table 3: Summary of CBR tests	15

List of Appendices

Appendix 1 – Maps Appendix 2 – Soil profiles Appendix 3 – Lab test results Appendix 4 – Insitu test results

1. Introduction

1.1 Background information

An upgrade of the bulk sewer infrastructure has been proposed in Thembalethu Phase 3 and 4 in the George Municipality of the Western Cape (see location of site in Figure 1 and topographic map in Figure 2). The proposed bulk sewer system will be required to manage sewage from the various UISP areas and accommodating all internal reticulation requirements for the proposed formal housing requirements in the area.

The Phase 3 and 4 bulk sewers will serve areas situated south and south-east of the UISP Areas 5 & 6A and will tie into an existing 250mm diameter bulk sewer line. The sewer line will gravitate to the existing Pacaltsdorp Sewer Pump Station 1 which then transfers the sewerage to the Outeniqua WWTW.

The site was investigated in order to determine the geology and general geotechnical properties of the site for the structural and civil engineering designs.

1.2 Scope of work

The scope of the work was to conduct a broad-scope geotechnical site investigation along the proposed pipeline route to assess and insitu soil types, excavatability, material useability and soil bearing capacity along the route, and the following methods were proposed and accepted by the consultants:

- Review the geological and geotechnical data for the area.
- Conduct a subsurface investigation consisting of the following methods:
 - Excavate a limited number of test pits across the site.
 - \circ $\,$ Profile and photograph a series of test pits according to SAICE Code of Practice.
 - Collect and transport soil samples for testing at SANAS-accredited civil engineering laboratory.
 - Conduct insitu DCP penetrometer testing at each test position to max depth of GL-2.0m or refusal.
- Analyse results and prepare a detailed factual and interpretive report containing all information from the investigation and including recommendations for the design of earthworks, structures and services or any further investigations.

1.3 Available information

The following information was available for consultation:

- 1:50 000 and 1:250 000 geological maps of the area, obtained from the Council for Geoscience.
- Topo-cadastral data for the area, obtained from the National Geospatial Institute (NGI).
- Aerial photos of the area, obtained from the NGI and Google Earth.
- Site layout plans provided by the consultant.

Figure 1: Site locality map

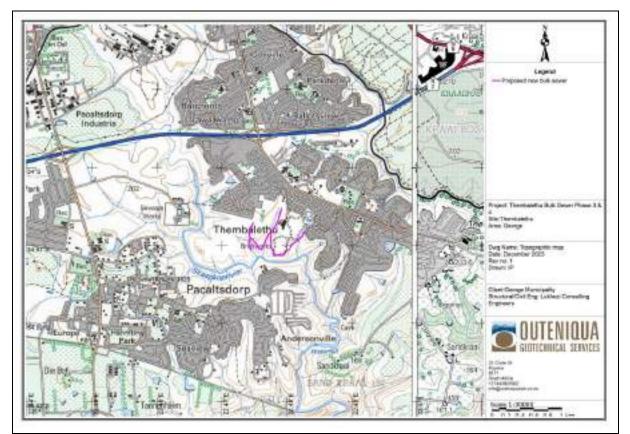


Figure 2: Topographic map of the area showing the proposed bulk sewer lines

2. Site description

The site was located in the township of Thembalethu, approximately 6km southeast of

George Central Business District (CBD). The site area was accessible via 13th Street and Mfayana Street, south of the formal Thembalethu Township (see Figure 2).

The natural topography of the area is generally characterised by gently sloping plateau areas (gradient 1:10 - 1:50), which then slope downward at moderate to steep gradients into the surrounding natural watercourses that drain southward into tributaries of Skaapkop River (see Figure 3). The site area was largely occupied by informal dwellings (shacks) and kraal structures and access around the site was limited to a few gravel roads and many footpaths. The vegetation cover was highly transformed and sparse in most areas but dense towards the main natural drainage lines, consisting of long grass, fynbos and alien trees (see Figure 4 and Figure 6). There were several small dams and poorly drained areas (ponds) where stormwater had collected and there was some existing stormwater infrastructure noted in some areas (See Figure 7).

The local site topography and ground surface conditions at the time of the investigation were very uneven in places due to historical mining operations associated with the old Allbrick Quarry, and there were several old excavations, erosion dongas and mounds of soil, producing a highly irregular ground surface (see Figure 8 to Figure 10).

The climate of the area was classified as temperate and seasonally wet, with a Wienert N-Value of approximately 2-3. The surface conditions on the site at the time of the investigation were very moist to wet due to recent heavy rains with several ponds of stagnant water lying about the site.

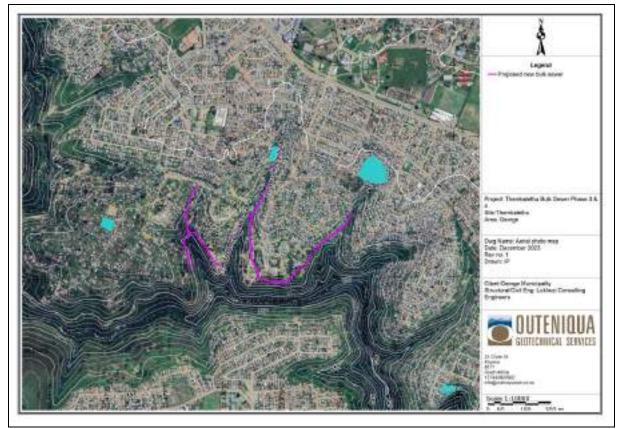


Figure 3: Aerial photo of the site area

Figure 4: Gravel access roads on the site

Figure 5: Footpaths on site

Figure 6: Typical site conditions

Figure 7: Existing stormwater pipe culvert near TP4

Figure 8: Old quarry area on site

Figure 9: Mounds of soil associated with the old mining activities

Figure 10: Erosion dongas commonly seen on the site

3. Methods of investigation

A review of available geotechnical data was conducted prior to mobilising to site. Once on site, a brief site walk-over inspection was conducted before commencing with the subsurface investigation.

The subsurface investigation consisted of 8 test pits excavated with a pick and shovel (See **Appendix 1** for a plan of the test positions). The subsurface investigations were conducted in order to establish the near-surface geology and general geotechnical profile of the site. The soil profiles and photographs of the test pits were included in **Appendix 2** of this report.

Samples of insitu soils were collected from test pits for Foundation Indicator (grading, Atterberg limits and moisture content), Modified AASHTO maximum dry density, optimum moisture content and CBR. The tests were conducted at a SANAS-accredited civil engineering laboratory in accordance with standard South African test methods. See **Appendix 3** for details.

In situ dynamic cone penetrometer (DCP) tests were conducted at each of the test pit positions. The tests were done in accordance with TMH6 ST6. The probes were driven from ground surface to a depth of NGL-2.0m or refusal. Details of the tests were included in **Appendix 4** of this report.

The site testing data was then collated and assessed by a professional engineering geologist/geotechnical engineer.

4. Results of the site investigation

4.1 Regional geology

The geological mapping of the area indicated that the site was underlain by granite of the Maalgaten suite of the George pluton (see Figure 11) which is well exposed in old

mining excavations across the site (see Figure 12). The George pluton consists of several granitic bodies that were intruded into older country rocks of the Kaaimans Group of meta-sediments during the Cambrian era. Younger meta-sedimentary rocks of the Peninsula Formation (Table Mountain group) occur to the north of the George area. The George pluton has been subjected to intense deformation, similar to that of the older country rocks of the Kaaimans Formation and typically exhibit strong penetrative planar and linear fabrics. In some places the granite has been intensely sheared, mainly along its margins. There are no major geological faults in the immediate vicinity of the site, and there is a low risk of seismic activity in the area.

The Maalgaten granite is the most voluminous lithological unit of the George pluton which underlies most of the George area. The granite rock is poorly exposed in the George area and is typically covered by a thick soil overburden of weathered saprolite. The underlying "fresh" zone is typically dark to light grey, slightly weathered to unweathered, moderately to slightly fractured, medium hard to very hard. The dominant mineral types are quartz, K-feldspar, plagioclase, muscovite, chlorite, biotite and epidote.

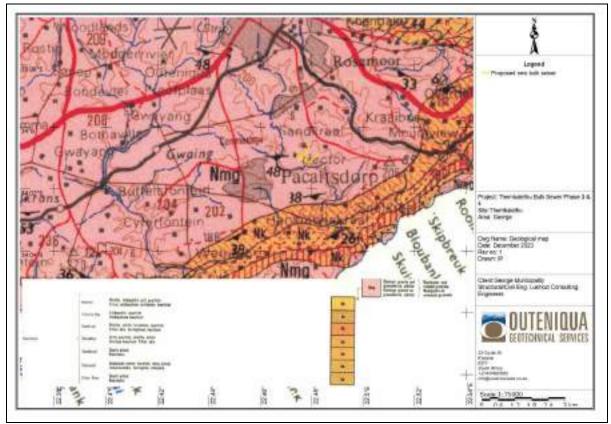


Figure 11: Geological map of the area

Figure 12: Exposure of weathered granite near site

4.2 Local soil and rock types

Test pits conducted on the site (see Figure 13) indicated that the general soil profile consisted of the following horizons for surface downward (See also Figure 14):

- Imported fill (disturbed/dumped soil) Silty/clayey gravelly sand
- Colluvium/hillwash (topsoil) silty sand
- Pedogenic ferricrete (plinthite/laterite) silty/clayey sandy gravel
- Residual completely weathered granite clayey/silty gravelly sand or silty sandy gravel.

The underlying rock profile consisted of a "weathered zone" underlain by a "fresh zone". The weathered zone typically ranges from light grey to light orange brown, highly to moderately weathered, highly fractured, very soft to soft rock which can probably be ripped using mechanical methods. Apart from some isolated metapelitic xenoliths (schist, phyllite), no other rock types or formations occur in the quarry area.

The soil horizons were described in detail in the following paragraphs.

Figure 13: Test pits conducted on site

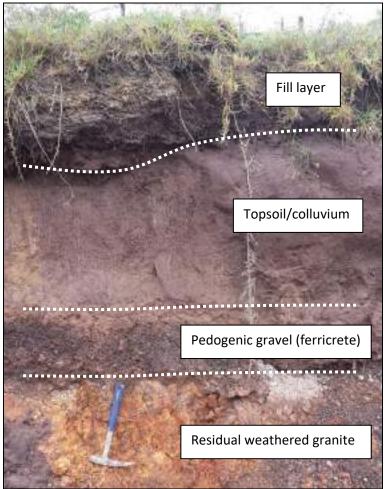


Figure 14: Typical soil profile observed in the area

Imported Fill

Superficial fill material recorded in some test pits was generally described as moist, dark

yellow to dark red orange, clayey/silty sandy gravel or clayey/silty sand with varying consistency. In some areas, this fill layer also contained building rubble (see Figure 15) and rubbish. The thickness of this horizon varied widely but was typically less than 1m but exceeded 1.5m in some areas.

Transported soil (Colluvium and alluvium)

The naturally transported soil appeared to primarily consist of moist, dark grey/brown, silty fine sand. In the upper portion of the horizon, the soil is described as loose and pinholed, with some organic content. Lower down, horizon may transition to an intact state. Sporadic occurrences of alluvial gravel were also encountered, exhibiting a more dense consistency compared to the finer colluvial soils.

Residual

The residual soil, derived from the in situ weathering of the underlying granite rock, was generally described as moist, light yellowish/reddish orange in colour, medium dense/firm to dense/stiff, fissured/intact clayey silty gravelly sand or clayey sandy gravel (see Figure 16). Some localised black staining along fissures indicated groundwater seepage. Overall, the residual soil profile pointed towards a well-established granitic base with a potential localized variation in moisture content.

Figure 15: Brick rubble fill encountered at TP1

Figure 16: Typical soil types exposed at TP5

A map of the test positions was provided in Figure 17 and a summary of the test pit data was provided in Figure 18 and Table 1.

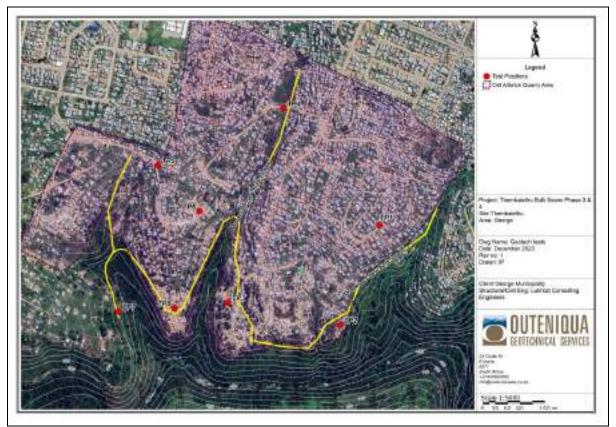


Figure 17: Geotechnical map

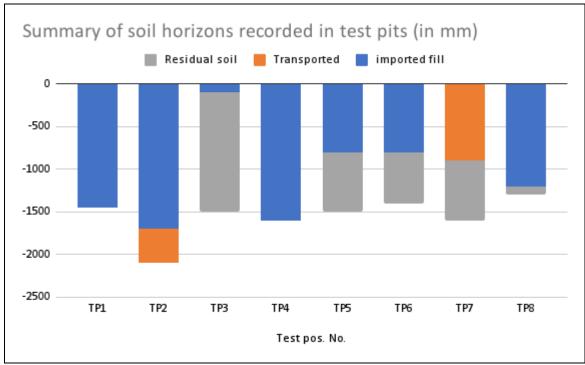


Figure 18: Summary of the soil profiles

Test pos. No.	Imported soil (fill)	Colluvium/ alluvium	Residual	Total depth of test pit	Refusal depth
TP1	0-1450	-	-	1450	-
TP2	0-1700	1700-2100	-	2100	-
TP3	0-100	-	100-1500	1500	-
TP4	0-800	-	800-1500	1500	-
TP5	-	0-2500	-	2500	-
TP6	0-800	-	800-1600	1600	-
TP7	-	0-900	900-1600	1600	-
TP8	0-1200	-	100	1300	-

 Table 1: Summary of test pit data (layer thickness in mm)

4.3 Groundwater

During the investigation, free groundwater was not encountered in any of the test pits but there was evidence of previous seepage from existing exposures and in some mottled soils. Seasonal seepage was also expected due to the typical wet climate of the area.

4.4 Insitu tests

In situ penetration tests (DCP) conducted through the upper 2m of the profile indicated the that the soil was typically variable in consistency/strength. The fill material was typically loose/very loose (see TP2, TP4, TP5 & TP6) but the natural soil profile was relatively dense (medium dense to dense/stiff). There were some localised increases in penetration rate near the upper contact of the residual soil, which may indicate the presence of moist soil or seepage (e.g. at TP7 @1m).

4.5 Lab tests

Representative samples of the insitu soil types were collected for Foundation Indicator tests to determine the particle size distribution (grading) and Atterberg limits. The results of the Foundation Indicator tests were shown in Table 2 and an analysis of the particle size distributuions were presented in Figure 19.

Test	Sample	Atterberg Limits			Pä	article Ar	nalysis (usc	
Pit No	Depth (mm)	PI	LL	LS	Clay	Silt	Sand	Gravel	MC*	PE **	***
TP1	0-300	12	28	6	14	25	27	34	0	LOW	GC
TP2	0-700	14	29	7	25	18	40	17	0	LOW	SC
TP3	100-1500	9	36	5	13	26	28	33	0	LOW	GM
TP4	1300-1600	13	25	7	16	34	36	14	0	LOW	CL
TP5	400-800	15	30	8	3	10	32	55	0	LOW	GC
TP6	0-800	12	43	6	12	60	21	7	0	LOW	ML
TP7	800-1600	13	38	13	28	18	39	15	0	LOW	SM
TP8	0-1200	12	38	6	12	38	35	15	0	LOW	ML

Table 2: Summary of Foundation Indicator tests

* Insitu Moisture Content ** Potential Expansiveness *** Unified Soil Classification

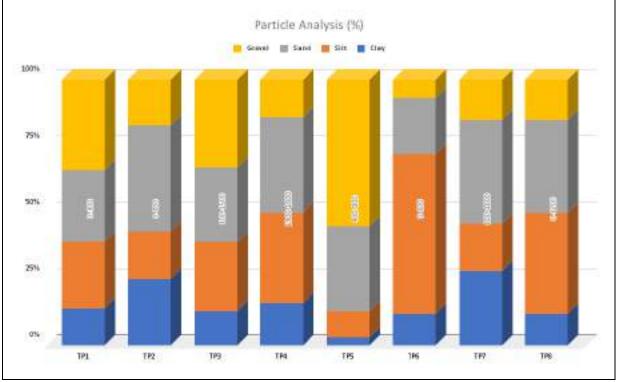


Figure 19: Particle size distribution

The results of the tests indicated that the soils in the test pits exhibited a range of particle sizes from clay to gravel. The clay content of the soils ranged from 3% to 28%, and the silt content ranged from 10% to 60%. The plasticity index (PI) was typically low-medium, ranging from 9 to 14%.

The soil samples recovered from test pits were classified according to the Unified Soil

Classification System (USCS), based on their grain size distribution and plasticity, as:

- CL (clays with low to medium plasticity)
- ML (silty fine sands, silts)
- SM (Silty sands)
- SC (clayey sands)
- GC (clayey gravels)

Representative samples were collected for maximum dry density (Mod. AASHTO), CBR & Road Indicator tests to determine the potential of the material for structural fill purposes and/or for subgrade fill in pavement designs. The results of the tests were summarised in Table 3.

Test Sample Pit Depth				CBR at	,		Swell	PI	GM	MDD	COLTO
No	Depth (mm)	100 %	98 %	95%	93%	90 %	(%)	(%)	GM	омс	Class
TP1	0-300	7	6	5	5	4	1.5	12	1.51	1948/ 9.3	G9 Subgrade
TP2	0-700	5	3	2	1	1	2.4	14	1.37	1876/ 12.8	Not Classified
TP3	100-1500	6	5	4	4	3	1.8	9	1.89	1957/ 8.0	Not Classified
TP4	1300- 1600	9	5	6	5	3	1.3	13	1.1	1.14	Not Classified
TP5	400-800	14	10	6	4	2	1.7	15	1.9	2006/ 8.2	Not Classified
TP6	0-800	2	2	1	1	1	6	12	0.72	1750/ 13.3	Not Classified
TP7	900-1600	4	2	1	1	1	2.9	13	1.21	1868/ 11.2	Not Classified
TP8	0-1200	3	3	2	2	1	2.8	12	1.22	1978/ 8.4	Not Classified

Table 3: Summary of CBR tests

The CBR test results indicated that the soils encountered on site were generally poor quality. General site observations did, however, indicate some sporadic deposits of coarser-grained soils such as sands & gravels related to the old quarrying activity which could be potentially useful as general/bulk fill on platforms or lower subgrade fill in roads but these were not sampled and would have to be identified in further investigations.

5. Geotechnical assessment

5.1 Groundwater, permeability and site drainage

Localised groundwater seepage, possible small springs and surface water ponding was expected in the area, requiring attention to site drainage and stormwater management. High percentages of surface run-off due to low permeability soils was also expected.

5.2 Excavations and natural slope stability

Anticipated excavation classification in terms of SABS1200D for the proposed pipeline were provisionally classified under "Soft" class.

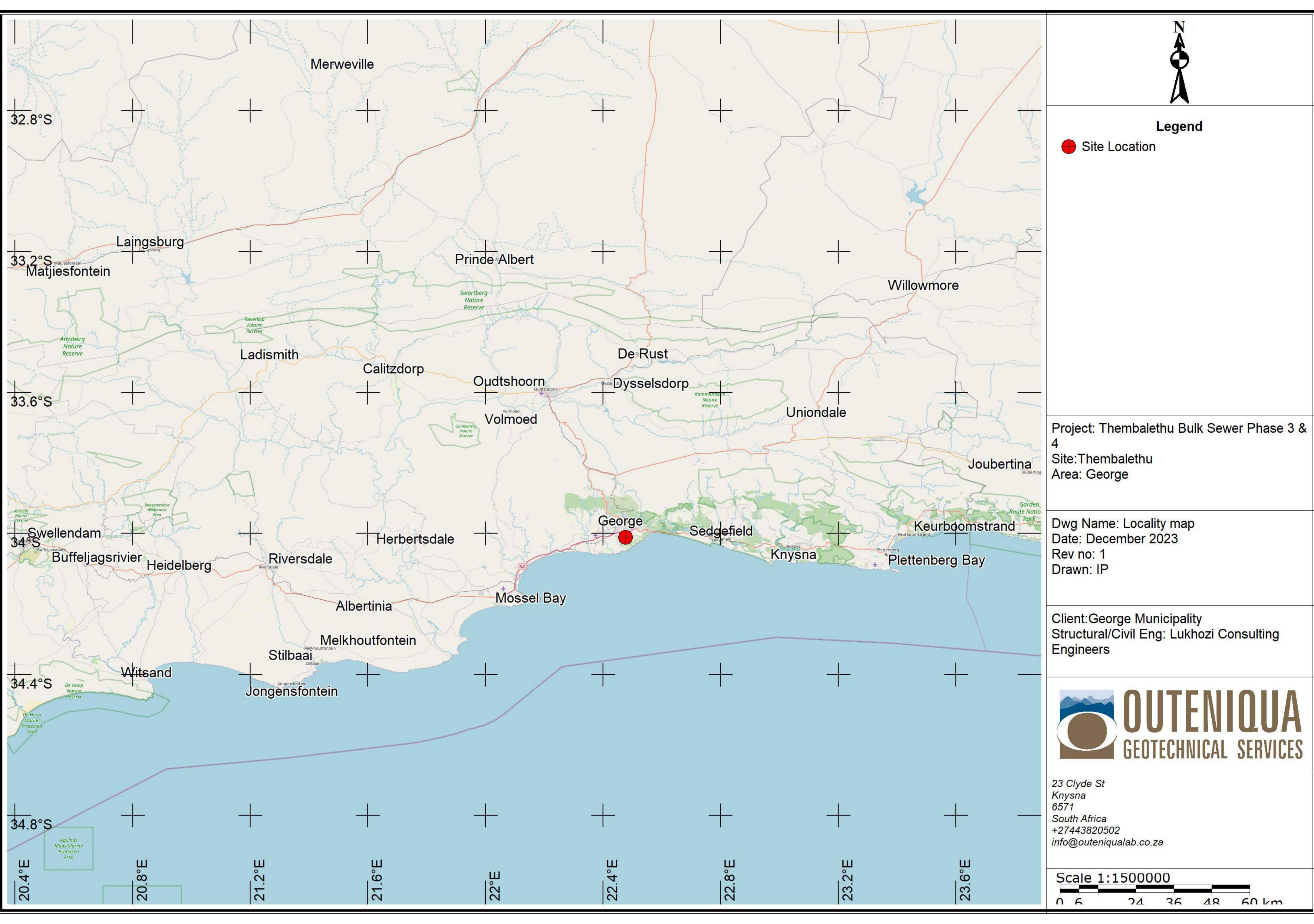
The proposed pipeline route runs across a highly variable topography due to the historical mining operations and current human activity, and there were several excavations, erosion dongas and heaps of soil with potentially unstable steep slopes on the site.

Trench sidewalls up to 1.5m deep were expected to be marginally stable for short periods of time with minimal shoring/overbreak required, but excavations deeper than 1.5m would require battering of sidewalls to approx. 45°.

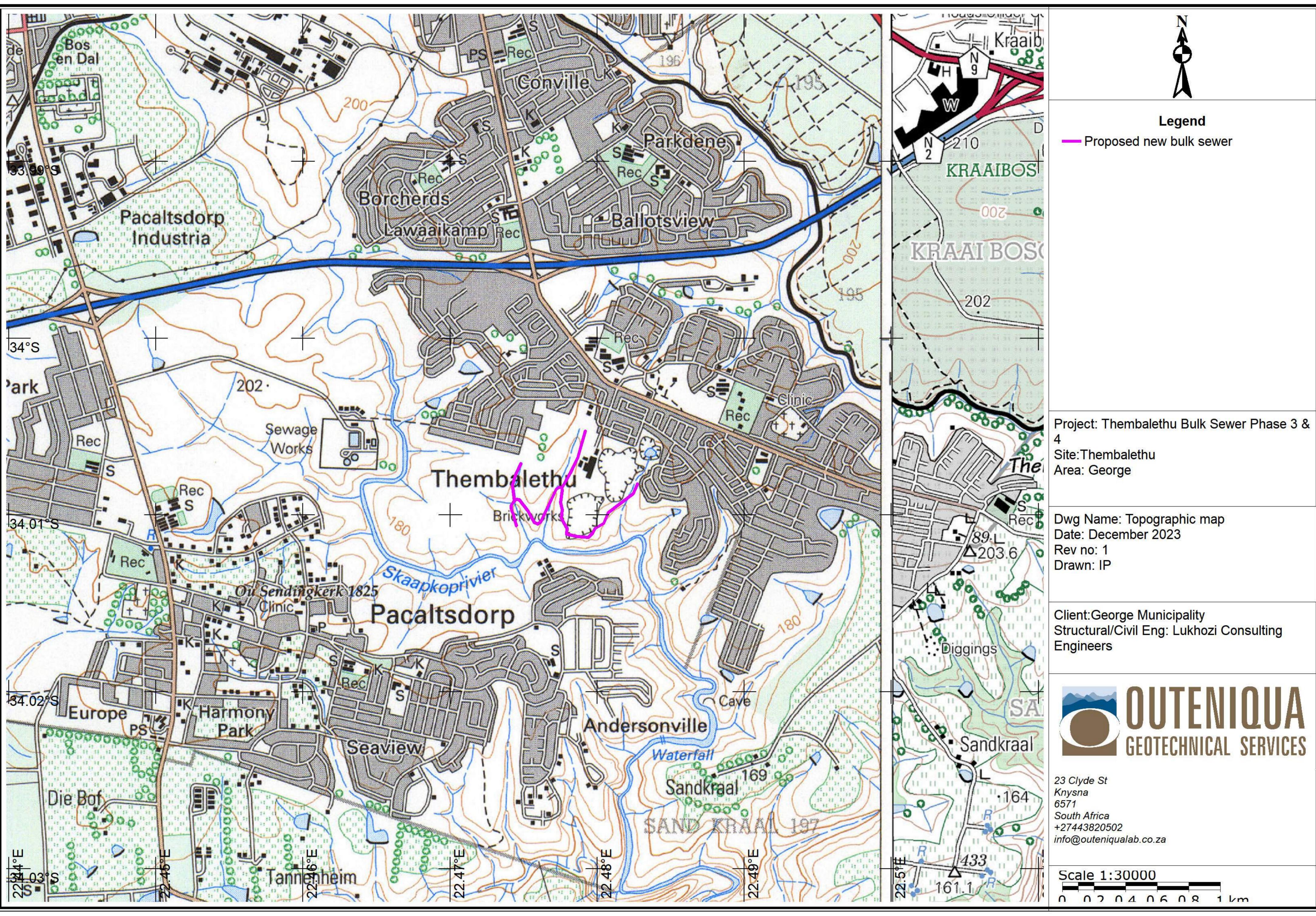
6. Recommendations

The design of structures and civil services remains the responsibility of the appointed civil and structural engineers. The recommendations contained herein do not supersede or override any applicable standards, codes, project specifications or designs provided by the appointed engineers.

The following recommendations were based on limited information gained from the site investigation, and although the confidence in the information was high, some variation in ground conditions was expected to occur between information points. All geotechnical information should therefore be confirmed during construction and if necessary, additional investigations may have to be commissioned. Any significant variations should be brought to the attention of the authors or appointed geotechnical engineers for comment or further recommendations. It was recommended that the structural engineer discuss his/her conceptual design with the geotechnical engineers to ensure that any calculations and recommendations were in line with current information.

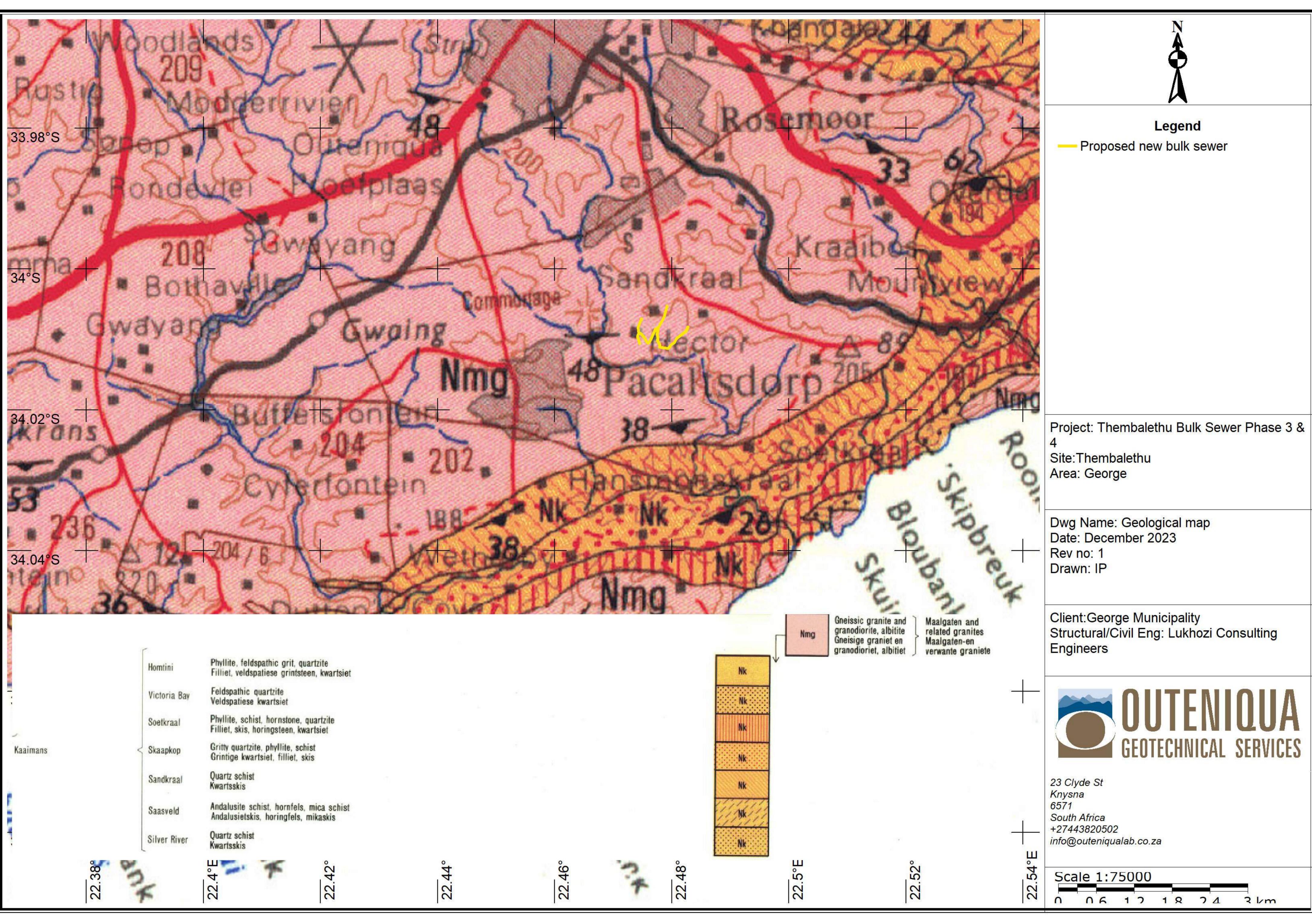

The following recommendations were provided for consideration by the civil engineers:

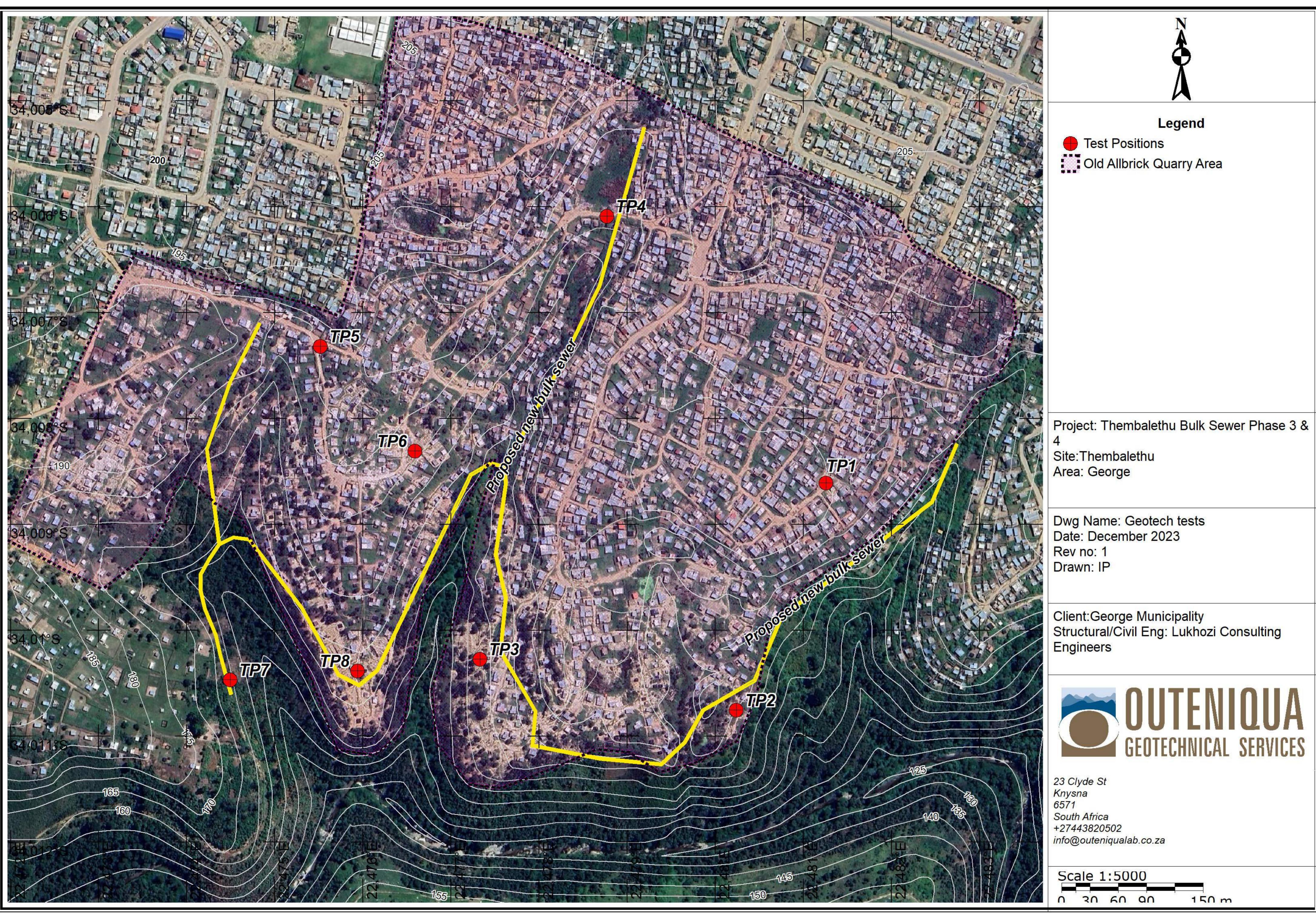
- Difficult access, steep slopes, and unsafe working conditions were expected along the route, requiring consideration for appropriate plant and site clearance along the proposed sewer line route. Crossing of natural drainage lines also requires careful consideration of poor/wet ground conditions and high erosion potential.
- Some dewatering of excavations may be required in places (mainly near existing drainage lines/low areas).
- Pipelines should be embedded in a cradle of well compacted imported material at a minimum depth of 1.5m. Pipe bedding and blanket materials should be imported selected granular material as per SABS 1200LB. Compaction of pipe cradle materials should be done in accordance with SABS 1200LB.
- Soil obtained from excavations should be stockpiled and inspected by the engineer for possible use as selected main fill material over the pipe cradle. General fill should be compacted to min 93%MDD.
- Structures such as manholes, pumpstations and pipe support structures (thrust blocks, piers, etc) should be founded on dense residual (insitu) soil at a minimum depth of NGL-1m and vertical bearing pressures should be limited to 150kPa. It is further recommended that the founding conditions be verified by a geotechnical engineer before foundations are cast.

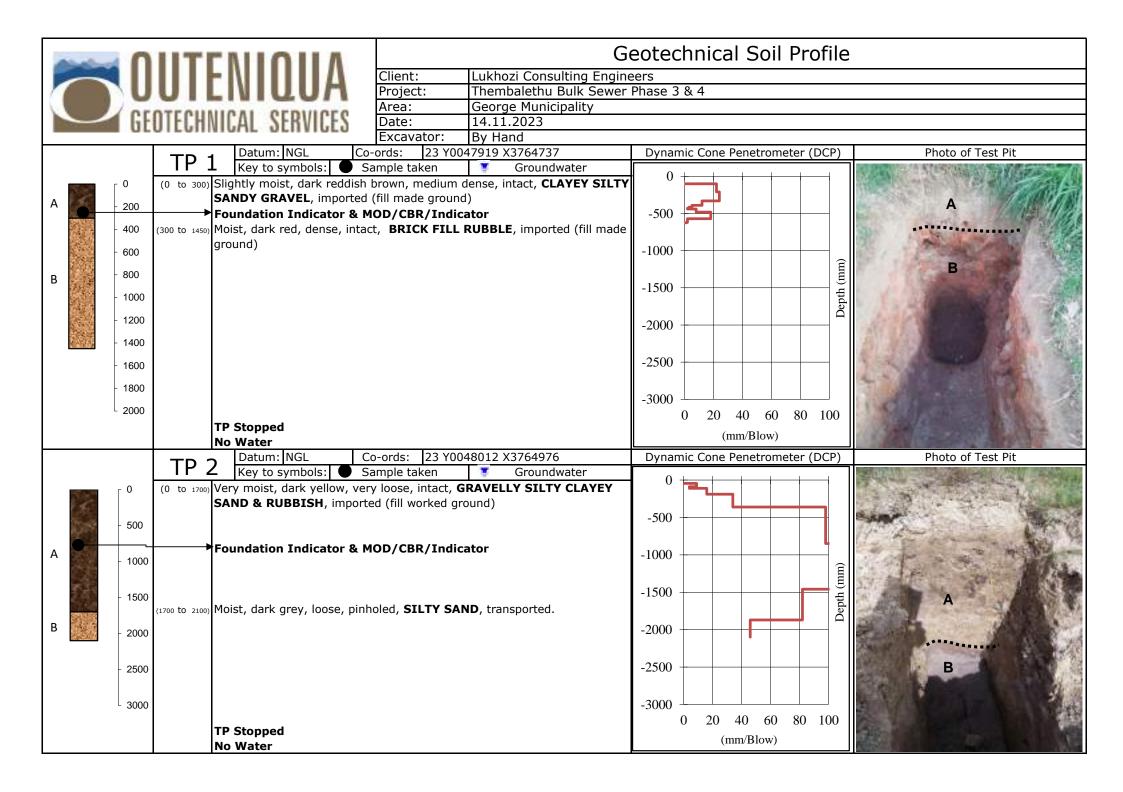

7. Conclusions

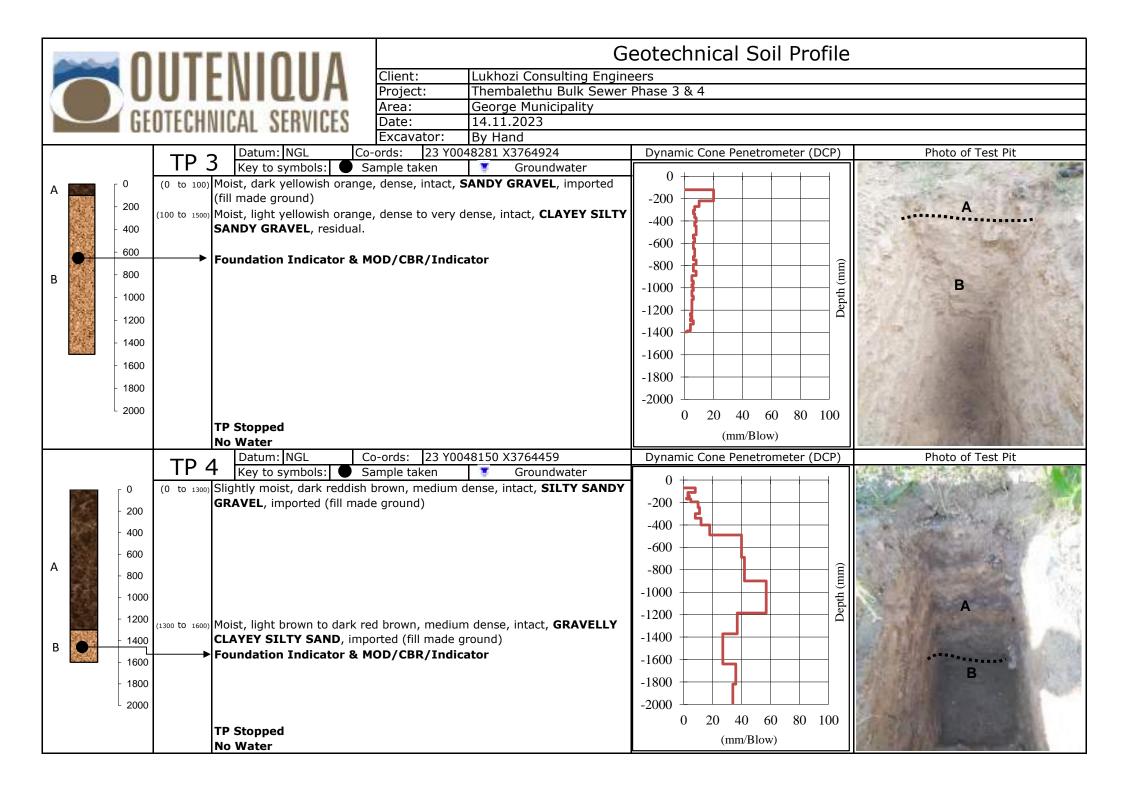
The investigations indicated that the design of the proposed pipeline route presents some technical challenges, including access, existing informal dwelllings, topography variations, old quarrying areas, site drainage problems and poor soils. Some preliminary recommendations were provided for consideration by the design engineers but all information should be verified during construction. Appendix 1

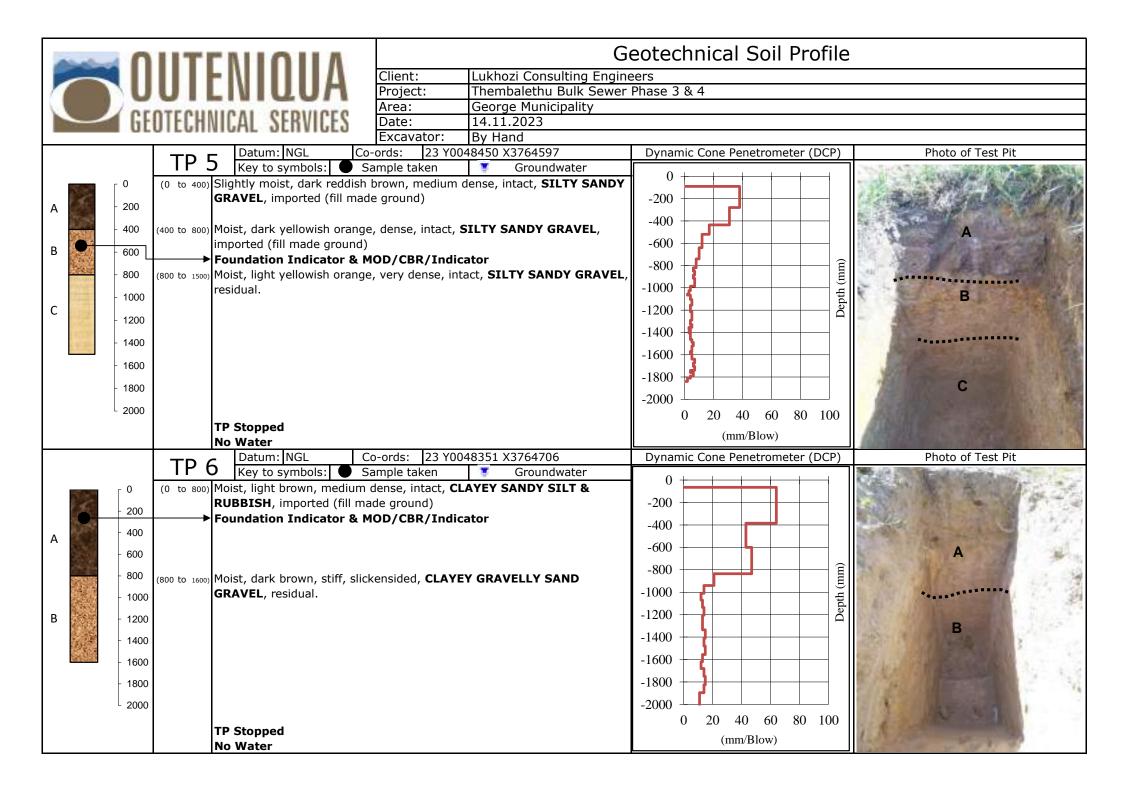
Maps

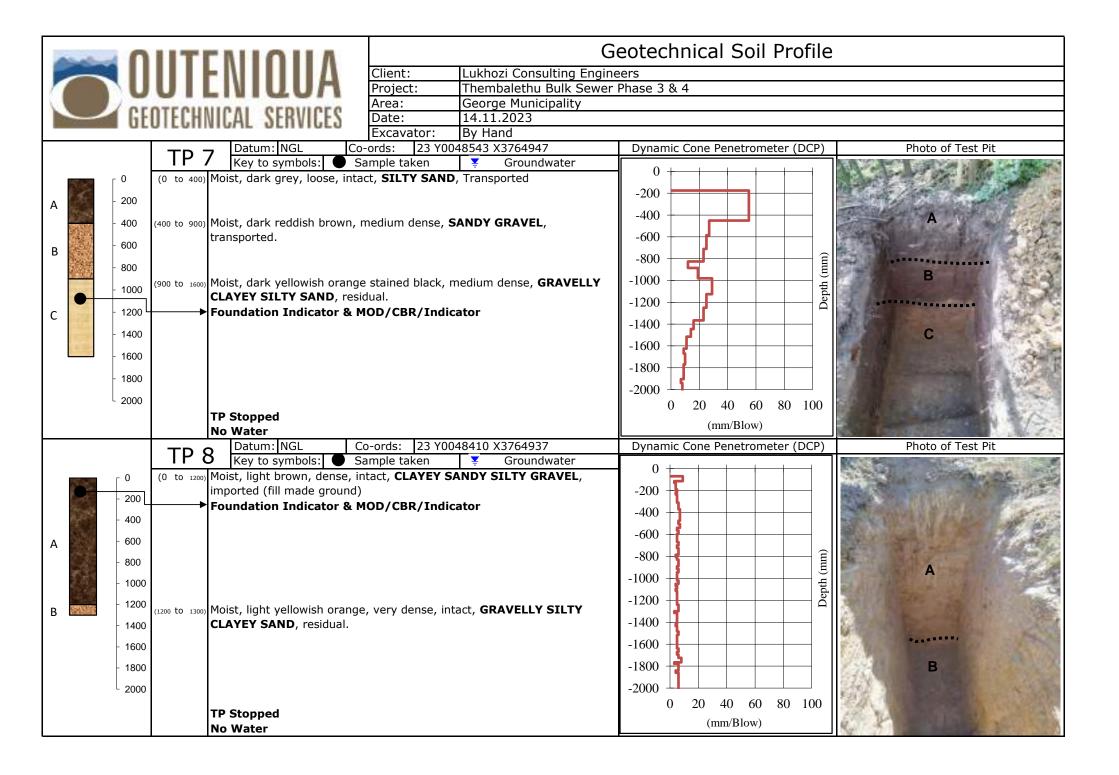




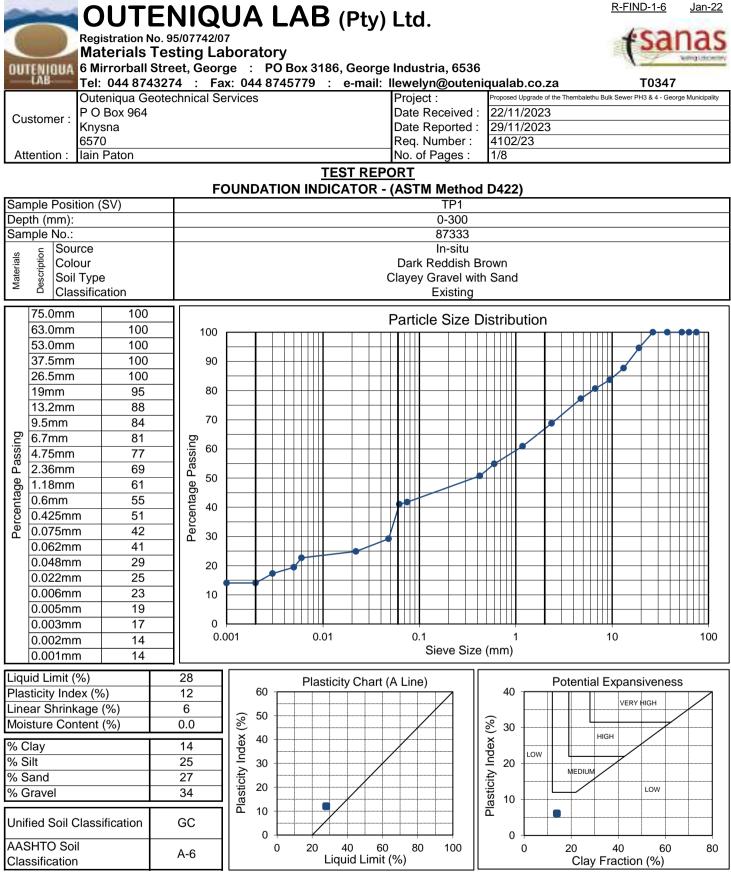






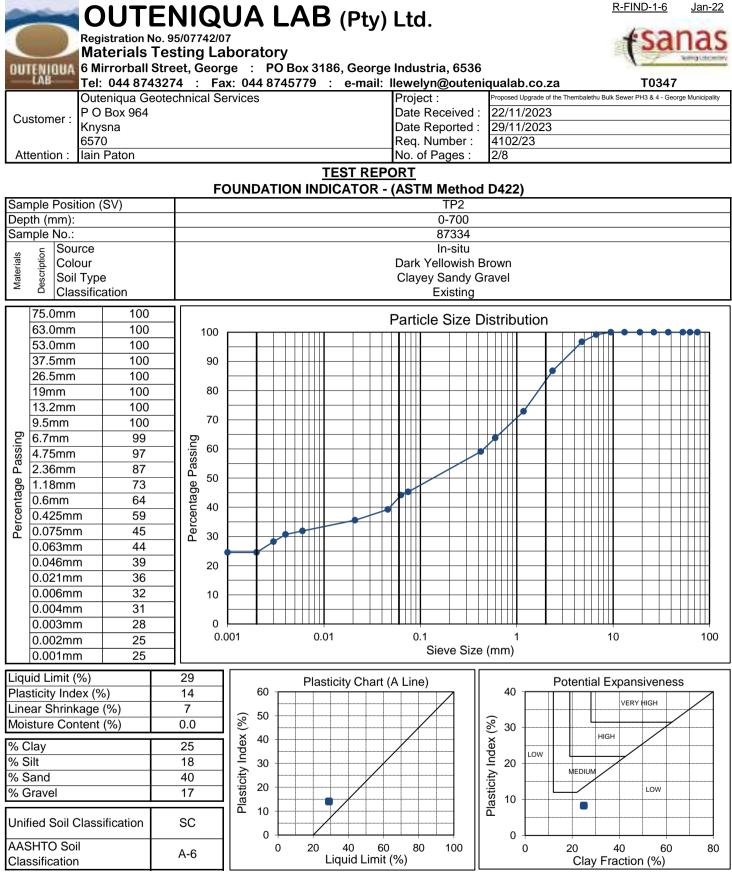

Appendix 2

Test pit profiles



Appendix 3

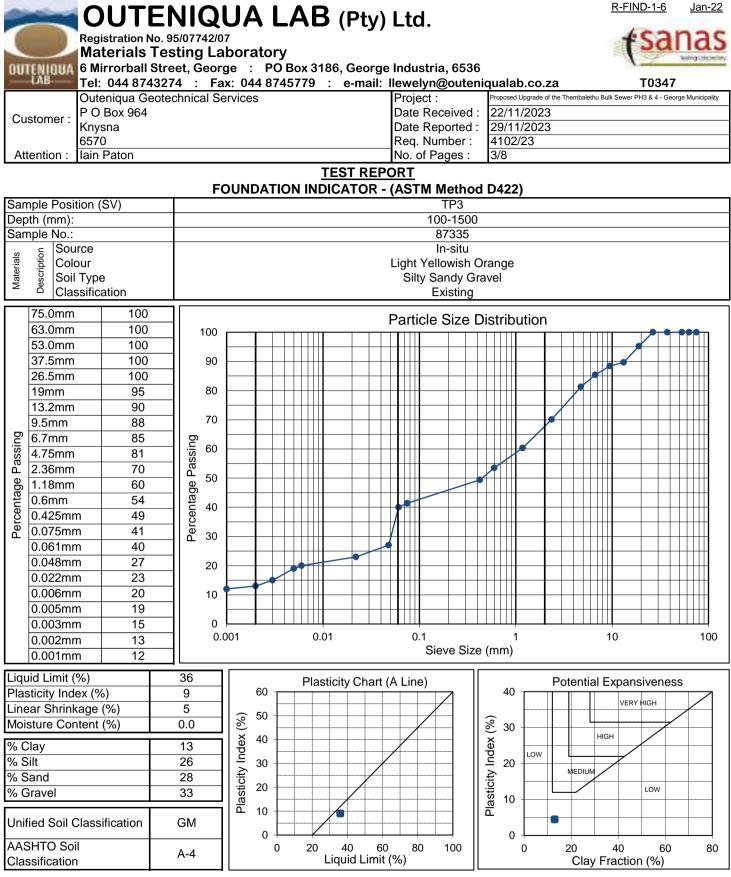
Lab test data


Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

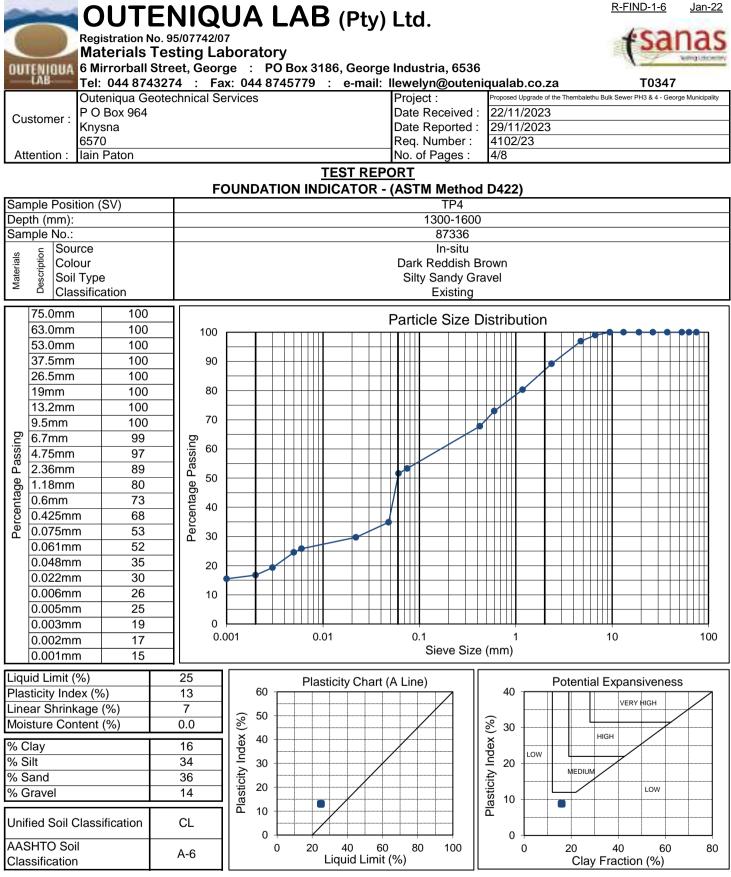
1. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Directors of Outeniqua Lab.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.


3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

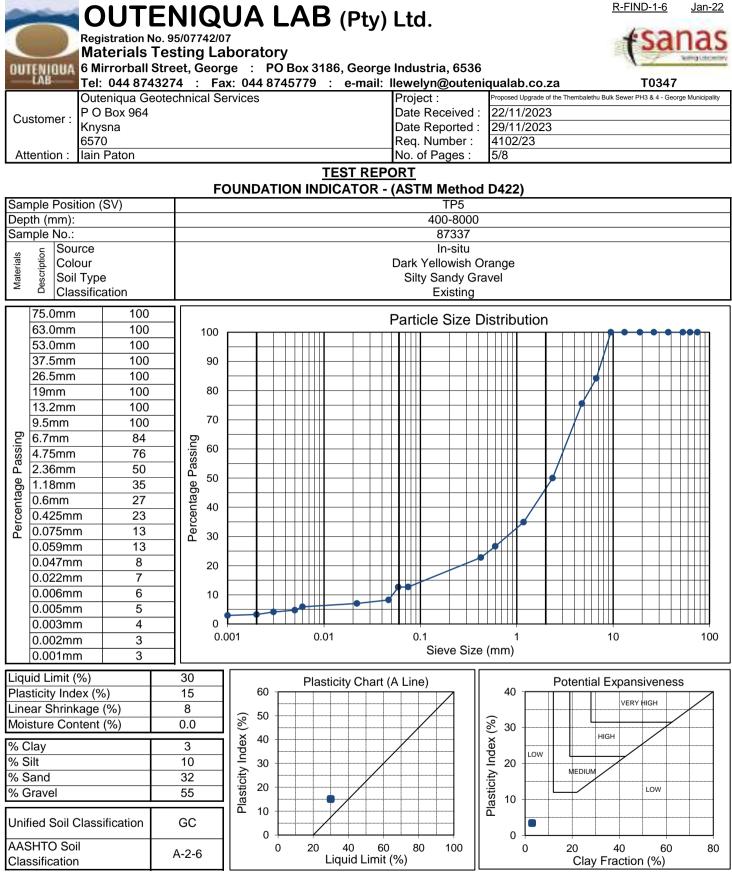
Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

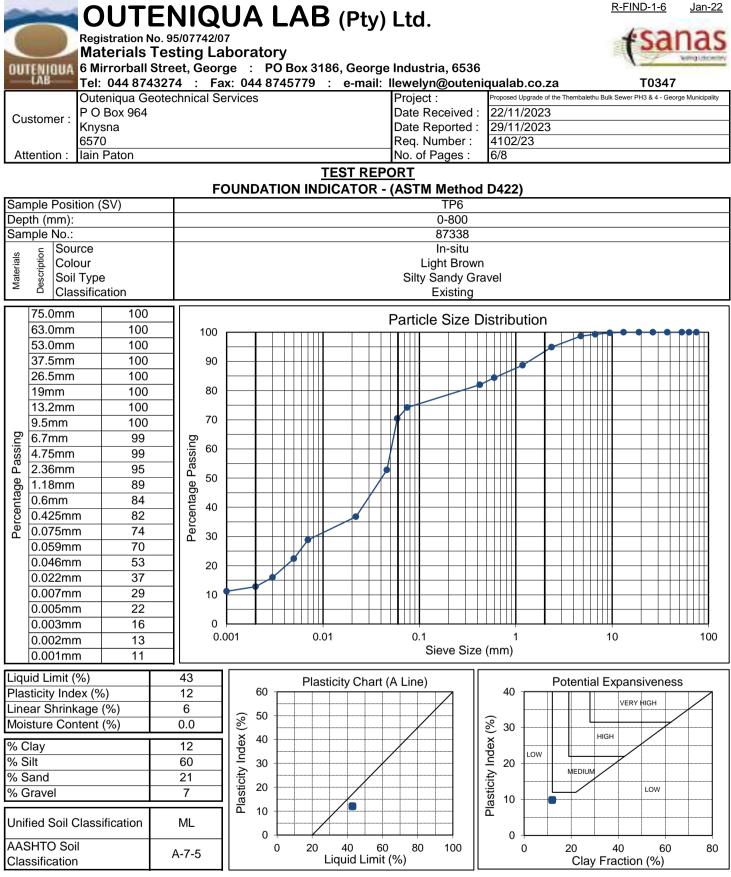
Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

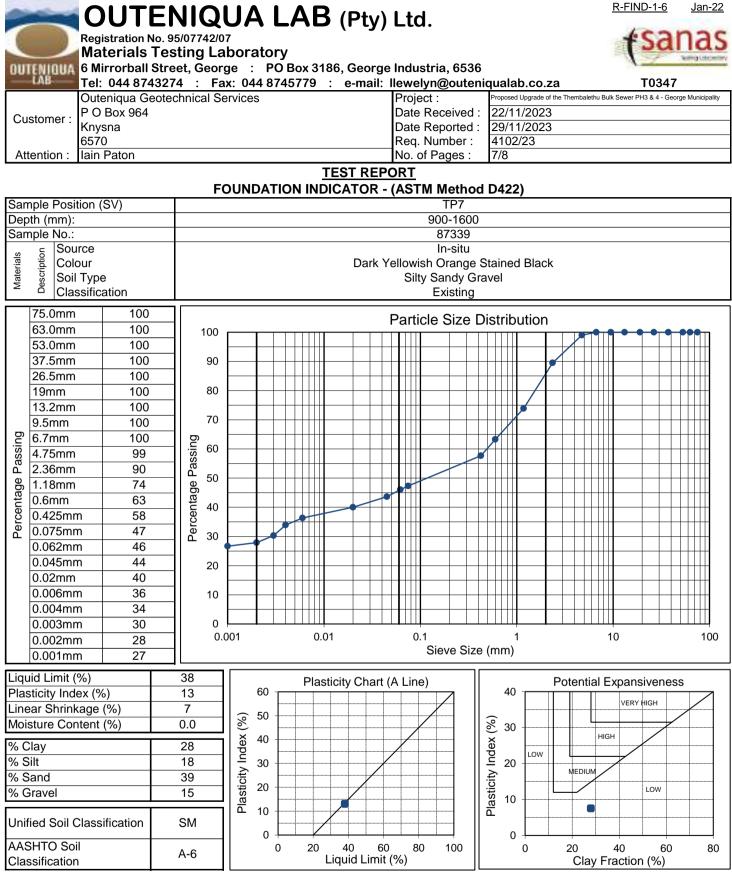
Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

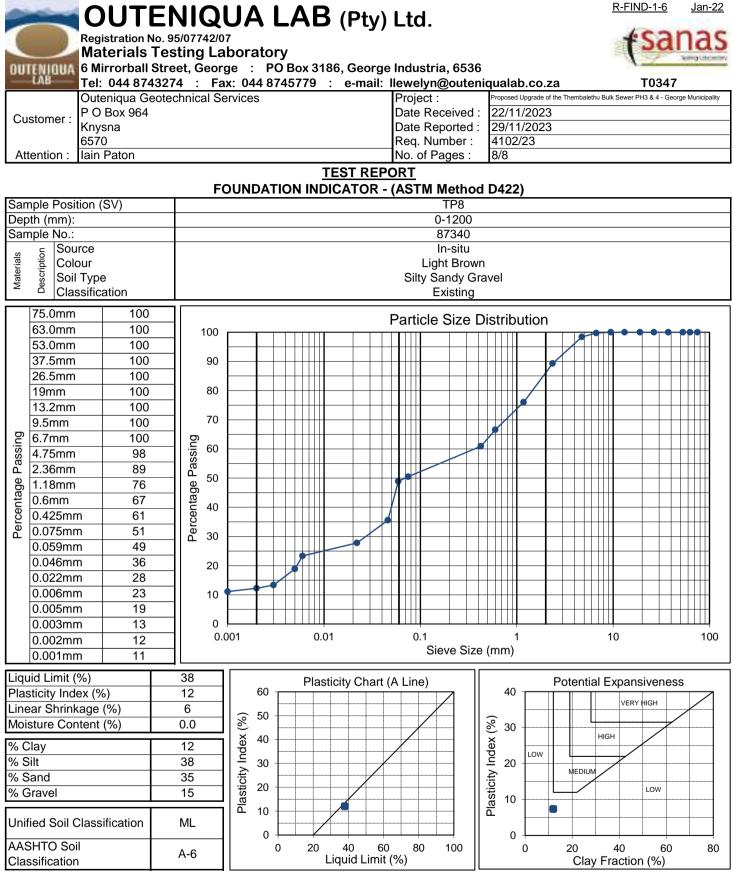
Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

and the second second			ΔR (D+	w) 1 +d		<u>R-CBR-1-9</u> Jun-23
	Registration No. 95/077			Γι	y) Lla.		Acanac
	Materials Testing						Tallas
				•	ana Inductria (CE)		A Stad (stowing
ENIC	6 Mirrorball Street, 6 Tel: 044 8743274 :						za T0347
2.112			119 . e	-mai		•	
	Outeniqua Geotechnic	al Services			Project : Date Received :		the Thembalethu Bulk Sewer PH3 & 4 - George Muni
stom	her: P O Box 964				Date Received : Date Reported :		
	6570				Req. Number :		
entic					No. of Pages :	1/8	
enuc			TES	TD	EPORT	1/0	
		CAL			EARING RATI	<u>o</u>	
San	nple Position (SV)	TP1	COLTO	D:			87333
Dep	oth (mm)	0-300	G9				Sieve Analysis
Sam	nple No	87333	Subgra	de			
s	5 Source	In-si					P 80
ria	Colour	Dark Reddi	sh Brown				1 1 1 1 1 1 1 1 1 1
ate	Soil Type	Clayey Grave	I with Sand	d			
Ŝ	Source Colour Soil Type Classification	Propose					B 80 B 80 B 80 B 80 B 80 B 80 B 80 B 80
				- (S	ANS 3001 Method	I GR1)	
	75 mm	100				,	0.0 0.1 1.0 10.0 100.0
	63 mm	100		Opinion			Sieve Size
	50 mm	100					CBR Chart
SSI	37.5 mm	100					
Ра	28 mm	100					
ge	20 mm	100					
-	14 mm	98					CBR (%)
Ser	5 mm	85					
erc	2 mm	71					
٩	0.425 mm	52					90 92 94 96 98 100 102
	0.075 mm	26.0					Compaction (%)
			ndicators	- (S	ANS 3001 Method	PR5)	
Gra	ding Modulus *	1.51	0.75 - 2.70	<u> </u>			Sieve Analysis
	arse Sand Soil-Mortar (%)	27					
		Atterber	g Limits -	(SAI	NS 3001 Method C	GR10)	
Liqu	uid Limit (%)	28		ľ			<u>60</u> 60
Plas	sticity Index (%)	12	< 12 ≤ 12	*			
Line	ear Shrinkage (%)	6.0					80 00 10 0 10 0
		Material Strength	- (SANS 3	001	Method GR30,GR4	0 - SCALPED)	<u> </u>
0	Max Dry Density (kg/m ³)	1948					0.0 0.1 1.0 10.0 100.0 Size
⊡	Optimum Moisture Content (%)	9.3					Sieve Size
Σ	Mould Moisture Content (%)	9.2					CBR Chart
Α	Relative Compaction (%)	100.0					
	Swell (%)	1.5	<u>≤</u> 1.5	\checkmark			
		94.9					CBR (%)
	Relative Compaction (%)						1 H
в	Swell (%)	1.6					0
в	Swell (%) Relative Compaction (%)	1.6 91.8					0
в	Swell (%) Relative Compaction (%) Swell (%)	1.6 91.8 1.9					
в	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density	1.6 91.8 1.9 7					
B C	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density	1.6 91.8 1.9 7 6					1 0 2 Compaction (%)
B C	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density	1.6 91.8 1.9 7 6 5					
B C	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density	1.6 91.8 1.9 7 6 5 5 5	 ≥ 7	*			Compaction (%) 87333 Wearing Course Graph (TRH 20)
B C	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density	1.6 91.8 1.9 7 6 5					Compaction (%) S7333 Wearing Course Graph (TRH 20)
CBR CBR	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density @90% Max Dry Density	1.6 91.8 1.9 7 6 5 5 5			Condition		
CBR CBR	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density @90% Max Dry Density situ Moisture Content (%)	1.6 91.8 1.9 7 6 5 5 5 4	Mate	rial (1 0 2 Compaction (%) • 87333 • Wearing Course Graph (TRH 20) 500 Slippery 100 Slippery 100 Slippery 100 (Get School Slippery) 100 Slippery 100 (Get School Slippery)
CBR CBR	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density @90% Max Dry Density situ Moisture Content (%) Soil Cla	1.6 91.8 1.9 7 6 5 5 4 ssification Of The	Mate	rial (Condition Only On The Tests	Results Above	1 0 2 Compaction (%) • 87333 • • 87333 • • 87333 • • 87333 • • 500 Slippery • 90 300 • Erodble (May be Dusty) • B200 Materials
CBR C 🛛	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density @90% Max Dry Density situ Moisture Content (%) Soil Cla COLTO Specification:	1.6 91.8 1.9 7 6 5 5 4 ssification Of The G9 Subgrade	Mate	rial (Results Above	1 0 2 Compaction (%) • 87333 • Wearing Course Graph (TRH 20) 500 Slippery 400 Slippery 300 Endols 40 Slippery 40 Slippery 40 Materials
CBR C 🛛	Swell (%) Relative Compaction (%) Swell (%) @100% Max Dry Density @98% Max Dry Density @95% Max Dry Density @93% Max Dry Density @90% Max Dry Density situ Moisture Content (%) Soil Cla	1.6 91.8 1.9 7 6 5 5 4 ssification Of The	Mate	rial (Results Above	1 0 2 Compaction (%) • 87333 • • 87333 • • 87333 • • 87333 • • 550 Slippery • 9300 Erodble • Erodble (May be Dusty) • 86 200 • Materialis Good

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

1				v) +d		<u>R-CBR-1-9</u> Jun-23
-				y) Lla.		Acanac
	Registration No. 95/077					- Sallas
	Materials Testing					And recently
ENIC	MA 6 Mirrorball Street, G					200 17
LAB-	Tel: 044 8743274 :		779 : e-mai	I: Ilewelyn@oute	niqualab.co.	za T0347
	Outeniqua Geotechnic	al Services		Project :		the Thembalethu Bulk Sewer PH3 & 4 - George Munic
stom	P O Box 964			Date Received :		
storn	Knysna			Date Reported :		
	6570			Req. Number :	4102/23	
entic	on : Iain Paton				2/8	
				REPORT		
		CAL	<u>IFORNIA B.</u>	EARING RATI	<u>0</u>	
Sam	ple Position (SV)	TP2	COLTO:		[87334
	th (mm)	0-700	Not			
	nple No	87334	Classified			Sieve Analysis
	•	In-sit				P 80
ial	Colour	Dark Yellowi	sh Brown			
Materials	Soil Type	Clayey Sand				
Σa	Source Colour Soil Type Classification	Existi	-			Bu 80 Bu 80 Bu 80 Bu 90 Bu 90
				ANS 3001 Method		20 20
	75 mm	100				0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion		<u> </u>	Sieve Size
g	50 mm	100	• •		┟───┼──	
ssir	37.5 mm	100				CBR Chart
	28 mm	100		· · · · · · · · · · · · · · · · · · ·		
	20 mm	100				· · · · · · · · · · · · · · · · · · ·
tag	14 mm	100				CBR (%)
~	5 mm	95				
erc	2 mm	80				
۳,	0.425 mm	54				
	0.425 mm	29.7				Compaction (%)
	0.075 1111		ndicators - /S	ANS 3001 Method		
Grad	ding Modulus *	1.37		ANS SOUT MELHOU		-
	rse Sand Soil-Mortar (%)	33				Sieve Analysis
CUa			n Limits - (SAN	NS 3001 Method 0	2R10)	
Liqu	id Limit (%)	29				s - s
	ticity Index (%)	14				
	ar Shrinkage (%)	7.0				80 40 40 40 40 40 40 40 40 40 40 40 40 40
LINE	ai Onnikage (78)		- (SANS 3001	Method GR30,GR4		ā ²⁰
	Max Dry Density (kg/m ³)	1876				0.0 0.1 1.0 10.0 100.0
MDD	Optimum Moisture Content (%)	12.8	ł – – – –		<u>├</u>	Sieve Size
Σ	Mould Moisture Content (%)	12.0	<u> </u>		<u>├</u>	
	Relative Compaction (%)	100.0			<u>├</u>	CBR Chart
	Swell (%)	2.4				
	Relative Compaction (%)	94.8	<u> </u>		┠───┼──	
в	Swell (%)	2.7	<u> </u>		<u>├</u>	CBR (%)
	Relative Compaction (%)	92.1			<u>├</u>	· °
	Swell (%)	2.9			<u>├</u>	
	@100% Max Dry Density	5				
	@98% Max Dry Density	3	<u> </u>		<u>├</u>	Compaction (%)
BR	@95% Max Dry Density	2			<u>├</u>	• 87334
СВ	@93% Max Dry Density	1	<u> </u>		┟───┼──	
	@90% Max Dry Density	1	┨───┤──		┨───┤──	Wearing Course Graph (TRH 20)
	w 30 /0 Wax Dry Density		Material (L Condition		(a) 500 - 450 - Slippery
In	eitu Moieture Contont (0/)					
1115	situ Moisture Content (%)	ssification Of The	Material Based	Only On The Tests		250 - Erodible
	COLTO Specification:	Not Classified	material Dased	only on the rests		S 200 - Materials Good
	AASHTO System	A-2-6	$\left \right $		┨────┤───	
		A-2-0	1	1		
	Unified System	SC				0 4 8 12 16 20 24 28 32 36 40 44 48

Ruaan Lesch

Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

For Outeniqua Lab (Pty) Ltd. 1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

1				v) I +d		<u>R-CBR-1-9</u> Jun-23
	Registration No. 95/077 Materials Testing	42/07		y) Llu.		fsanas
			ay 2196 Caa	rao Inductrio 65'	26	A Shad (secondly
TENIC LAB	Tel: 044 8743274 :					za T0347
-			15 . e-ma		-	
	Outeniqua Geotechnic P O Box 964	al Services		Project : Date Received :	22/11/2023	he Thembalethu Bulk Sewer PH3 & 4 - George Municipa
stom	er : Knysna			Date Received : Date Reported :		
	6570			Req. Number :	4102/23	
tentic				No. of Pages :	3/8	
			TEST R	EPORT	0/0	
		CAL		EARING RATI	0	
Sam	ple Position (SV)	TP3	COLTO:	_	1	87335
	th (mm)	100-1500	Not			
	ple No	87335	Classified			Sieve Analysis
6	S Source	In-sit				P 80
rial	Colour	Light Yellowis	sh Orange			
atel	Soil Type	Silty Sandy	-			
Materials	Classification	Existi				B0 B0 Ceeeing B0
				ANS 3001 Method	d GR1)	
	75 mm	100			Í	0.0 0.1 1.0 10.0 100.0
_	63 mm	100	Opinion			Sieve Size
Passing	50 mm	100				CBR Chart
ass	37.5 mm	100				
	28 mm	100				
ige	20 mm	100				CBR (%)
nta	14 mm	100				C C C C C C C C C C C C C C C C C C C
<u> </u>	5 mm	89				
0	2 mm	61				
	0.425 mm	35				90 92 94 96 98 100 102 Compaction (%)
	0.075 mm	15.5				
0	l'a a NA a dada a Y		ndicators - (S	ANS 3001 Method	d PR5)	
	ding Modulus *	1.89 42				Sieve Analysis
Coa	rse Sand Soil-Mortar (%)		Limite - (SAI	INS 3001 Method (2P10)	
Liqu	id Limit (%)	36				
	ticity Index (%)	9				
	ar Shrinkage (%)	4.5				ē
		Material Strength	- (SANS 3001	Method GR30,GR4	0 - SCALPED)	20
	Max Dry Density (kg/m ³)	1957		,		0.0 0.1 1.0 10.0 100.0
6	Optimum Moisture Content (%)	8.0				Sieve Size
	Mould Moisture Content (%)	8.1				CBR Chart
	Relative Compaction (%)	100.0				10
	Swell (%)	1.8				
в	Relative Compaction (%)	95.5				CBR (%)
_	Swell (%)	2.0				со стана стана Стана стана стан
	Relative Compaction (%)	91.2				
Ŭ	Swell (%)	2.5				1
	@100% Max Dry Density	6				0 2 Compaction (%)
R	@98% Max Dry Density	5				
CB	@95% Max Dry Density	4				• 87335 •
	@93% Max Dry Density	4				550 Wearing Course Graph (TRH 20)
\vdash	@90% Max Dry Density	3	Matarial	Condition		G 500 -
	situ Moisture Content (%)			Condition	1	5 350
		ssification Of The I	Material Based	Only On The Tests		2 300 - (May be Dusty)
	Son Cla		viaterial Dasea	only on the rests	Nesulis ADOVE	B 200 - Materials Good
		Not Classified				
	COLTO Specification:	Not Classified				50 Ravels and Corrunates
		Not Classified A-2-4 SM				E 100 -

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved. 1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

1		ΟΠΑΙ				<u>R-CBR-1-9</u> Jun-23
-				.y) Llu.		4canac
	Registration No. 95/077					- Sallas
CAUL			ov 3186 Goo	rao Industria 65'	36	Read Catemany
ENII LAB	Tel: 044 8743274 :					za T0347
			15 . e-ma		-	the Thembalethu Bulk Sewer PH3 & 4 - George Municipali
	Outeniqua Geotechnic P O Box 964	a Services		Project : Date Received :		the membalenu buk Sewel PH3 & 4 - George Municipali
stom	er : Knysna			Date Reported :		
	6570				4102/23	
tentio				No. of Pages :	4/8	
			TEST R	REPORT	1/0	
		CAL		EARING RATI	0	
San	ple Position (SV)	TP4	COLTO:		<u>-</u>	87336
	th (mm)	1300-1600	Not			
	nple No	87336	Classified		-	Sieve Analysis
oun í	Source	In-sit				
ials	Colour	Dark Reddis				is see o
ter		Silty Sandy				
Βa	SourceColourSoil TypeClassification	Existi				g 40
				ANS 3001 Method		B 80 B 80
	75 mm	100	· · · ·			0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
gr	50 mm	100	0		<u>├</u>	<u> </u>
assing	37.5 mm	100				CBR Chart
Pa	28 mm	100				
Ð	20 mm	100				
ercentag	14 mm	100				CBR (%)
ien.	5 mm	97				°
erc	2 mm	87				
م	0.425 mm	65				90 92 94 96 98 100 102
	0.075 mm	33.6				Compaction (%)
	0.070 1111		ndicators - (S	ANS 3001 Method	PR5)	
Gra	ding Modulus *	1.14				Qiaun Ametania
	rse Sand Soil-Mortar (%)	25				Sieve Analysis
			Limits - (SA	NS 3001 Method (GR10)	<u> </u>
Liqu	iid Limit (%)	25			, í	
	sticity Index (%)	13				
Line	ar Shrinkage (%)	6.5				86 40 50 20
			- (SANS 3001	Method GR30,GR4	0 - SCALPED)	<u> </u>
0	Max Dry Density (kg/m ³)	1971				0.0 0.1 1.0 10.0 100.0
MDI	Optimum Moisture Content (%)	9.8				Sieve Size
2	Mould Moisture Content (%)	9.9				CBR Chart
Α	Relative Compaction (%)	100.0				10
	Swell (%)	1.3				
в	Relative Compaction (%)	95.4				CBR (%)
5	Swell (%)	1.5				
С	Relative Compaction (%)	92.2				
	Swell (%)	1.8				
	@100% Max Dry Density	9				0 2 Compaction (%)
2	@98% Max Dry Density	8				
CB	@95% Max Dry Density	6				• 87336 •
	@93% Max Dry Density	5				Wearing Course Graph (TRH 20)
	@90% Max Dry Density	3				a 500
L .			Material	Condition		5 400 -
In	situ Moisture Content (%)					5 350 - Good 2 300 - (May be Dusty)
L			Material Based	Only On The Tests	Results Above	Son 200 - Materials Ravels
	COLTO Specification:	Not Classified				Good Good Good Ravels and Corrugates
I	AASHTO System	A-2-6				
Ļ	Unified System	SC				0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
Tes	ts marked with a (*) are N	IOT SANAS Accre	edited results			

Ruaan Lesch

Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

For Outeniqua Lab (Pty) Ltd. 1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

OUTENNEULALAB (Pty) Ltd. Registration No. 950774207 Registration No. 950774207 Minrochall Street, George : PO Box 3186, George Industria, 6538 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Project : reversite the the street of the constructional Barnet of the construction Barnet of the constres (SANS 3001 Method GR30, GR0- SCALPED Origing Barnet of the co	1		<u>R-CBR-1-9 Jun-23</u>				
Materials Testing Laboratory Materials Testing Laboratory Total Duterials Testing Laboratory Total Total Total Duterials Ceorge : PO Dox 3186, George Industria, 6536 Total Total Duterials George : PO Dox 3186, George Industria, 6536 Total Total Duterials George : PO Dox 3186, George Industria, 6536 Total Total Duterials George : PO Dox 3186, George Industria, 6536 Total Total Soft Reported : 28/11/2023 Date Receiver : 22/11/2023 Date Receiver : 14/02/23 Materials Position (SV) The CLIPORIA BEARING RATIO Test REPORT Test REPORT Sample Position (SV) The CLIPORIA BEARING RATIO Statistication Statistication Sample Position (SV) The Reviewish Orange Situang Statistication Statistication Statistication So mm 1000 S Statistication Statistication Statistication Statistication Statistication So mm 1000 S Statistication Statistication Statistication Statistication Statistication Statistication Statistication </td <td></td> <td></td> <td></td> <td></td> <td>y) Llu.</td> <td></td> <td>(canac</td>					y) Llu.		(canac
§ Mirrorball Street, George : PO Box 3186, George Industria, 6536 Outeniqua Geotechnical Services P O Box 964 P O Box 970 P O Box 970 P O Box 970 P O Box 9							T Sallas
Tel: 044 8743274 Fax: 044 874579 : e-mail: Terres/light end based high 4 - Garge to the monocollege of the the monocolege of							Reling Literativy
Outenique Geolechnical Services P D Box 964 Sonta Project: P D Box 964 Construction : P D Box 964 Sonta Project: P D Box 964 Data Reported: 22/11/2023 Project: P D Box 964 Data Reported: 22/11/2023 Itention : Bambe Position (SV) TPS Depth (mm) No. of Pages i 5/8 Sample Position (SV) TPS Depth (mm) GO 2000 Box 964 Color Sonta Escalar Called Color Sample Position (SV) TPS Depth (mm) GO 2000 Box 964 Color Color Box 964 Color Sonta Escalar Box 900 Data Reported Color Sonta Escalar Box 964 Color Sample Position (SV) TPS Depth (mm) Go 200 Box 964 Color Color Box 964 Color Sonta Escalar Box 964 Color Sonta Escalar Box 964 Data Reported Color Sonta Escalar Box 964 Color Sample Position (SV) TPS Depth (mm) Material Indicators - (SANS 3001 Method GR10) Sonta Escalar Box 966 Data 964 Data Position (SN) Sonta Box 966 Data 966	ENI						T 00.47
P ⊂ Box 964 (670 Date Received: 122/11/2023 Baster Received: 122/11/2023 Req. Number: 41/02/3 Req. Number: 41/02/3 Req. Number: 41/02/3 Sample Position (SV) TP5 COLTO: Not Bample Position (SV) TP5 COLTO: Not 87337 Bample No 87337 Bit Position (SV) P5 Coltor: Not Bample No 87337 Bit Position (SV) P5 Coltor: Not 87337 Bample No 87337 Bit Position (SV) Date Received: 129/11/2023 87337 Bample No 87337 Bit Position (SV) P5 Coltor 87337 Bample No 87337 Bit Position (SV) Date Received: 129/11/2023 87337 Bample No 87337 Bit Position (SV) Date Received: 129/11/2023 87337 Bample No Bit Position (SV) Date Received: 129/11/2023 87337 Bample No Bit Position (SV) Date Received: 129/11/2023 87337 Batt Position (SV) Date Received: 129/11/2023 Bit Position (SV) Bit Position (SV) Batt Position	0/0			(79 : e-ma		-	
Ustomer: krysna 650 Req. Number: [410/23 Req. Rep. Number: [410/23 Req. Rep. Number: [410/23 Req. Rep.			al Services				the Thembalethu Bulk Sewer PH3 & 4 - George Municipal
Krysna Date Reported :: 29117/2023 ittention : Jain Paton No. of Pages :: 5/8 Sample Position (SV) Sample Pos	stom						
Ittention : Iain Paton IN0. of Pages : 5/8 TEREPORT CALIFORNIA BEARING RATIO Sample Position (SV) TP5 COLT0: Lassified 87337 Sample Position (SV) TP5 COLT0: Lassified 87337 Sample No 87337 10.58 87337 Sample No 87337 10.58 87337 Sample No 87337 10.58 10.58 Sample No 87337 10.58 10.59 Sample No 87337 10.58 10.50 Sample No 87337 10.50 10.50 Sample No 87337 10.50 10.50 Sample No 87337 10.00 10.00 10.00 TF5 mm 10.00 10.00 10.00 10.00 B 28 mm 10.00 10.00 10.00 10.00 10.00 Caracing Modulus * 19.00 10.00 10.00 10.00 10.00 Caracing Modulus * 19.00 10.00 10.00 10.00 10.00 10.00 Grading Modulus *	01011	Knysna					
TEST REPORT CALIFORNIA BEARING RATIO Sample Position (SV) TP5 COLTO: Not Sample No 87337 Sample No 87337 Classified 99 90 Source In-situ grad Source In-situ Dark Yellowish Orange 100							
CALIFORNIA BEARING RATIO Sample Position (SV) TP5 COLTO: Source Source Source Classified Sample No 87337 Classified Source In-situ Source	tentio	on : Iain Paton				5/8	
Sample Position (SV) TP5 COLTO: Not For the second s						•	
Deprint (mm) 400-800 Not Sample No 67337 Classified In-situ In-situ In-situ In-situ Material Indicators - (SANS 3001 Method GR1) In-situ 100 50 In-situ In-situ In-situ	~					<u>u</u>	07007
Sample No.			-				87337
g G Source In-situ Dark Yellowish Orange Solit Ype Sitty Sandy Gravel Existing Existing Material Indicators - (SANS 3001 Method GR1) 00 50 mm 100 01 50 mm 100 02 50 mm 100 03 37.5 mm 100 04 28 mm 100 05 50 mm 100 04 28 mm 100 05 5 mm 880 0.425 mm 344 100 0.425 mm 344 100 0.425 mm 344 100 0.425 mm 1.90 100 Coarse Sand Soil-Mortar (%) 39 100 Carses Sand Soil-Mortar (%) 42 100 10 415 100 Liquid Limit (%) 42 100 10 2006 100 0 100 100 10 2.2 100 10 2.2 100 10 100 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan=""2"C	San	nple No					
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan=""2"C	sla	Source					<u></u> 80
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan=""2"C	eria	Colour		0			6 0
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan=""2"C	1at	Soil Type					gg 40
75 mm 100 </td <td>2</td> <td>d Classification</td> <td></td> <td></td> <td></td> <td></td> <td>20</td>	2	d Classification					20
63 mm 100 8 Sive Size 63 mm 100 0				· · · ·	ANS 3001 Method	I GR1)	0
So mm 100 CBR Chart 37.5 mm 100 100 100 28 mm 100 100 100 96 20 mm 100 100 100 100 14 mm 98 100 100 100 100 14 mm 98 100 100 100 100 100 0.425 mm 34 100				inion			
a 28 mm 100 g 20 mm 100 14 mm 98 5 mm 80 0 22 mm 0.425 mm 34 0.075 mm 19.2 material Indicators - (SANS 3001 Method PR5) Grading Modulus* 1.90 Coarse Sand Soil-Mortar (%) 39 Material Strength - (SANS 3001 Method GR10) Liquid Limit (%) 42 Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Max Dry Density (kg/m ³) 2006 Optimum Moisture Content (%) 8.1 A Relative Compaction (%) 92.0 C Relative Compaction (%) 92.0 C Swell (%) 2.2 @ 100% Max Dry Density 10 @ 90% Max Dry Density 6	0			do			
a 28 mm 100 b 20 mm 100 14 mm 98 5 mm 80 0.425 mm 34 0.425 mm 34 0.75 mm 19.2 material Indicators - (SANS 3001 Method PR5) Grading Modulus * 1.90 Coarse Sand Soil-Mortar (%) 39 Carse Sand Soil-Mortar (%) 42 Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR10) Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Mould Moisture Content (%) 8.1 A Relative Compaction (%) 10.0 Swell (%) 2.2 Mould Moisture Content (%) 8.1 A Relative Compaction (%) 92.0 C Swell (%) 2.2 @ 100% Max Dry Density 10 @ 209% Max Dry Density 6 @ 93% Max Dry Density 6 @ 93% Max Dry Density 6 @ 93% Max Dry Density 6 @	ŝ						CBR Chart
a 28 mm 100 b 20 mm 100 c 5 mm 80 d 2 mm 56 0.425 mm 34 98 0.75 mm 19.2 90 Caracing Modulus* 1.90 1.90 Liquid Limit (%) 42 1.90 Linear Shrinkage (%) 7.5 1.90 Max Dry Density (kg/m ³) 2006 1.00 Mould Moisture Content (%) 8.1 1.00 Swell (%) 1.7 1.90 B Relative Compaction (%) 92.0 1.00 C Relative Compaction (%) 2.0 1.00 B 93% Max Dry Density 6 1.00	ass						
B 20 mm 100 0 14 mm 98 5 mm 80 0.425 mm 34 0.75 mm 19.2 1 Material Indicators - (SANS 3001 Method PR5) Grading Modulus * 1.90 Liquid Limit (%) 42 Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR10) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Max Dry Density (kg/m ³) 2006 Mould Moisture Content (%) 8.2 Mould Moisture Content (%) 8.2 Mould Moisture Content (%) 8.2 Max Dry Density (kg/m ³) 2006 C Relative Compaction (%) 92.0 C Relative Compaction (%) 2.2 @ 1000% Max Dry Density 10 @ 209% Max Dry Density 6	Δ.						
8 5 mm 80 1 <td>age</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	age						
C Construction	ente						
C Construction	rce						
O.075 mm 19.2 Compaction (%) Material Indicators - (SANS 3001 Method PR5) Sieve Analysis Grading Modulus * 1.90 Sieve Analysis Coarse Sand Soil-Mortar (%) 39 Sieve Analysis Liquid Limit (%) 42 Sieve Analysis Plasticity Index (%) 15 Sieve Analysis Material Strength - (SANS 3001 Method GR10) Sieve Analysis Material Strength - (SANS 3001 Method GR30, GR40 - SCALPED) Sieve Size Max Dry Density (kg/m³) 2006 Mould Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 Relative Compaction (%) 94.8 Swell (%) 2.0 C Swell (%) 2.2 @ 100% Max Dry Density 14 @ 93% Max Dry Density 6 @ 93% Max Dry Density 6 @ 93% Max Dry Density 6 @ 93% Max Dry Density 7 Material Condition Security Material Condition Secure Content (%) <td>Ре</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ре						
Outro mm 19.2 Material Indicators - (SANS 3001 Method PR5) Grading Modulus * 1.90 Coarse Sand Soil-Mortar (%) 39 Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 42 Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Mould Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 Swell (%) 1.7 B Relative Compaction (%) 94.8 Swell (%) 2.0 C Relative Compaction (%) 92.0 Waterial Condition 87337 Insitu Moisture Content (%) 2.2 Material Condition 87337 Material Condition 995% Max Dry Density 14 B Soli Classification Of The Material Based Only On The Tests Results Above Waterial Condition Material Condition Material Condition Insitu Moisture Content (%) Not Classified COLTO Specification: Not Classified A ASHTO System A-2-7 Unified System GM							
Grading Modulus* 1.90 Coarse Sand Soil-Mortar (%) 39 Atterberg Limits - (SANS 3001 Method GR10) Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Optimum Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Mould Moisture Content (%) 8.1 Relative Compaction (%) 10.0 Swell (%) 2.0 C Relative Compaction (%) 94.8 Swell (%) 2.2 (%) 0.0 0.1 Swell (%) 2.0 0 Swell (%) 2.2 0 (%) 0.0 0.1 (%) 0.2 0 (%) 0.0 0.1 (%) 2.2 0 (%) 0.0 0.1 (%) 0.0 0.0 (%) 0.0 0.0 (%) 0.0 0.0 (%) 0.0 0.0 <		0.075 mm					
Coarse Sand Soil-Mortar (%) 39 Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 42 Image: Compact on Com	_			ndicators - (S	ANS 3001 Method	d PR5)	
Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 42 Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Mould Moisture Content (%) 8.1 Relative Compaction (%) 100.0 Swell (%) 2.0 C Relative Compaction (%) 92.0 Swell (%) 2.2 @ 100% Max Dry Density 14 @ 20% Max Dry Density 14 @ 95% Max Dry Density 6 @ 90% Max Dry Density 6 Material Condition Material Condition Insitu Moisture Content (%) 8.2 Material Condition Material Condition AASHTO System A-2-7 Unified System GM							
Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Max Dry Density (kg/m³) 2006 Optimum Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 Relative Compaction (%) 100.0 Swell (%) 2.0 C Relative Compaction (%) 92.0 Swell (%) 2.2 Q @000% Max Dry Density 14 @98% Max Dry Density 14 @98% Max Dry Density 6 @99% Max Dry Density 2 Material Condition Stress Results Above Material Condition Material Condition Stress Results Above Material Condition Insitu Moisture Content (%) 2 Material Condition Stress Results Above COLTO Specification: Not Classified Material Based Only On The Tests Results Above Material Condition Material Condition Stress Results Above Stress Results Above Stress Results Above Material Condition Stress Results Above Strest Results Above Rest and Coringes <td>Coa</td> <td>arse Sand Soil-Mortar (%)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Coa	arse Sand Soil-Mortar (%)					
Plasticity Index (%) 15 Linear Shrinkage (%) 7.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Max Dry Density (kg/m ³) 2006 Optimum Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 A Relative Compaction (%) 100.0 Swell (%) 2.0 C Relative Compaction (%) 92.0 Swell (%) 2.2 Q @100% Max Dry Density 14 @29% Max Dry Density 14 @29% Max Dry Density 6 @39% Max Dry Density 2 9 87337 Wearing Course Graph (TRH 20) 9 9 9 @39% Max Dry Density 2 9 9 Material Condition 9 9 9 9 Insitu Moisture Content (%) 2 9 9 9 9 COLTO Specification: Not Classified 9 9 9 9 9 9 9 9 9 9 9 9 9	1.1			g Limits - (SAI	NS 3001 Method (3R10)	- 5 80
Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Q Max Dry Density (kg/m ³) 2006 Q Max Dry Density (kg/m ³) 2006 Mould Moisture Content (%) 8.2 Image: Compaction (%) 10.0 100.0 A Relative Compaction (%) 94.8 Image: Compaction (%) 92.0 Image: Compaction (%) 22.0 C Relative Compaction (%) 92.0 Image: Compaction (%) 22.0 Image: Compaction (%) 22.0 Weat Compaction (%) 92.0 Image: Compaction (%) 22.0 Image: Compaction (%) 23.0 <td></td> <td></td> <td colspan="2" rowspan="3">15 7.5</td> <td></td> <td></td> <td><u>6</u> 60</td>			15 7.5				<u>6</u> 60
Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Q Max Dry Density (kg/m ³) 2006 Mould Moisture Content (%) 8.2 Mould Moisture Content (%) 8.1 A Relative Compaction (%) 94.8 Swell (%) 2.0 C Relative Compaction (%) 92.0 C Swell (%) 2.2 C Q @98% Max Dry Density 14 Compaction (%) @98% Max Dry Density 10 C Material Condition Material Condition Secure Content (%) Secure Compaction (%) Max Dry Density 10 Compaction (%) Secure Compaction (%) Q @98% Max Dry Density 10 Compaction (%) Secure Compaction (%) Material Condition Material Condition Material Condition Secure Compaction (%) Secure Compaction (%) Material Condition Material Condition Secure Content (%) Secure Content (%) Secure Content (%) Material Condition Material Condition Material Condition Secure Compaction (%) Secure Compaction (%) Material Condition Material Condition							40
Max Dry Density (kg/m ³) 2006 0	LITE	ai Siiiikaye (76)			Mothod CB20 CB4		<u>م</u> 20
Optimum Moisture Content (%) 8.2 Sieve Size Mould Moisture Content (%) 8.1 CBR Chart A Relative Compaction (%) 100.0 Swell (%) 1.7 1 B Relative Compaction (%) 94.8 Swell (%) 2.0 1 C Relative Compaction (%) 92.0 Swell (%) 2.2 1 @ 100% Max Dry Density 14 1 @ 98% Max Dry Density 10 2 Compaction (%) 92.0 5 Swell (%) 2.2 1 @ 100% Max Dry Density 14 9 @ 98% Max Dry Density 10 9 @ 995% Max Dry Density 4 9 @ 90% Max Dry Density 2 5 Material Condition 5 5 Insitu Moisture Content (%) 1 5 COLTO Specification: Not Classified 5 AASHTO System A-2-7 4 10 Unified System GM 6 10 0 0 4 812 10 20 42 83 236 4		Max Dry Density (kg/m ³)		- (SANS 3001		- SCALFED	
Image: Second system Mould Moisture Content (%) 8.1 CBR Chart A Relative Compaction (%) 100.0 Image: Second system CBR Chart B Relative Compaction (%) 94.8 Image: Second system Second system Second system C Relative Compaction (%) 92.0 Image: Second system	8						
A Relative Compaction (%) 100.0 100.0 Swell (%) 1.7 100.0 100.0 B Relative Compaction (%) 94.8 100.0 C Relative Compaction (%) 92.0 100.0 C Relative Compaction (%) 92.0 100.0 Swell (%) 2.2 100.0 100.0 @98% Max Dry Density 14 100.0 100.0 @98% Max Dry Density 100 100.0 100.0 @98% Max Dry Density 100 100.0 100.0 @98% Max Dry Density 6 100.0 100.0 @99% Max Dry Density 4 100.0 100.0 @90% Max Dry Density 2 1000.0 100.0 Insitu Moisture Content (%) 1000.0 100.0 100.0 Insitu Moisture Content (%) 1000.0 100.0 100.0 COLTO Specification: Not Classified 1000.0 100.0 AASHTO System A-2-7 100.0 100.0 100.0 Unified System GM GM 0.0.4.8.12.18.20.24.28.32.6.40.44.48	Σ						.
A Swell (%) 1.7 B Relative Compaction (%) 94.8 Swell (%) 2.0 C Relative Compaction (%) 92.0 Swell (%) 2.2 (%) 2.2 (%) 2.2 (%) 2.2 (%) 2.2 (%) 2.2 (%) 2.2 (%) 0 (%) 2.2 (%) 0 (%)							
B Relative Compaction (%) 94.8 Image: Compaction (%) 94.8 C Relative Compaction (%) 92.0 Image: Compaction (%) 92.0 C Relative Compaction (%) 92.0 Image: Compaction (%) 92.0 C Relative Compaction (%) 92.0 Image: Compaction (%) 92.0 C Relative Compaction (%) 92.0 Image: Compaction (%) 2 Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) <	Α						
B Swell (%) 2.0 Image: Compaction (%) 92.0 C Relative Compaction (%) 92.0 Image: Compaction (%) 92.0 Swell (%) 2.2 Image: Compaction (%) 2.2 Image: Compaction (%) @ 100% Max Dry Density 14 Image: Compaction (%) 2 @ 98% Max Dry Density 10 Image: Compaction (%) 2 @ 95% Max Dry Density 6 Image: Compaction (%) 87337 @ 93% Max Dry Density 4 Image: Compaction (%) Stippery Image: Content (%) Image: Content (%) Image: Content (%) Stippery Coll Classification Of The Material Based Only On The Tests Results Above Stippery Rawls Good Image: Content (%) Image: Content (%) Image: Content (%) Rawls AASHTO System A-2-7 Image: Content (%) Rawls Contrugets Image: Content (%) Rawls Unified System GM GM Image: Content (%) Image: Cont							· · · · · · · · · · · · · · · · · · ·
C Relative Compaction (%) 92.0 Swell (%) 2.2 1 1 2 Weil (%) 2.2 1 0 2 Weil (%) 2.2 1 0 2 Weil (%) 0 2 0 2 Weil (%) 0 0 2 0 2 Weil (%) 0 0 0 2 0 2 Weil (%) 0 0 0 0 2 0 0 2 Weil (%) 0	В	Swell (%)					5. High
C Swell (%) 2.2 1 2 Weill (%) 2.2 1 2 (@ 100% Max Dry Density 14 10 2 (@ 98% Max Dry Density 10 6 6 87337 6 (@ 93% Max Dry Density 4 6 6 87337 6 (@ 90% Max Dry Density 4 6<							°
Image: Weak of the second s	С						
Image: Weak of the second s							
Image: Construction Image: Construction<							Compaction (%)
O @ 93% Max Dry Density 4 A	3R						• 87337
Insitu Moisture Content (%) Material Condition COLTO Specification: Not Classified AASHTO System A-2-7 Unified System GM	ប						
Material Condition Insitu Moisture Content (%) Silpery Insitu Moisture Content (%) Soil Classification Of The Material Based Only On The Tests Results Above Insitu Moisture Content (%) Insitu Moisture Content (%) COLTO Specification: Not Classified Insitu Moisture Content (%) Insitu Moisture Content (%) AASHTO System A-2-7 Insitu Moisture Content (%) Insitu Moisture Content (%) Unified System GM Insitu Moisture Content (%) Insitu Moisture Content (%)							550
Insitu Moisture Content (%) Good Soil Classification Of The Material Based Only On The Tests Results Above Good COLTO Specification: Not Classified AASHTO System A-2-7 Unified System GM		2 20 /0 max big bonony		Material	Condition	1	0 300 - Slippery
Soil Classification Of The Material Based Only On The Tests Results Above COLTO Specification: Not Classified AASHTO System A-2-7 Unified System GM	In	situ Moisture Content (%)	6 350 - Good				
COLTO Specification: Not Classified get 150 Good AASHTO System A-2-7 Good Ravels and Corrugates Unified System GM 0 4 8 12 16 20 24 83 36 40 44 48			ssification Of The N	Material Based	Only On The Tests	Results Above	2 300 - (May be Dusty)
Unified System GM 0 4 8 12 16 20 24 28 32 36 40 44 48					,		
Unified System GM 0 4 8 12 16 20 24 83 36 40 44 48							Ravels and Corrugates
TESIS INDIACU WILL DIE INCTIGANAS ACCIEULEU TESULS.	Tes			edited results	I		Grading Coefficient (Gc)

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

-		<u>R-CBR-1-9</u> Jun-23								
				y) Llu.		Acanac				
	Registration No. 95/077	T Sallas								
	Materials Testing		Reling Littleminy							
ITENI	6 Mirrorball Street, 6 Tel: 044 8743274 :					za T0347				
Build			rs e-mai		-					
	Outeniqua Geotechnic	al Services		Project :		the Thembalethu Bulk Sewer PH3 & 4 - George Municipality				
ustom	her: P O Box 964			Date Received : Date Reported :						
	6570			Req. Number :						
ttentio				No. of Pages :	6/8					
			TEST P		0/0					
		CAL		EARING RATI	0					
Son	nple Position (SV)	TP6	COLTO:		<u> </u>	87338				
	oth (mm)	0-800	Not		-	87338				
	nple No	87338	Classified		-	Sieve Analysis				
		In-sit								
Materials	Source Colour Soil Type Classification	Light Bro				b so				
ter	Soil Type	Silty Sandy								
Ma		Existi				00 40				
				ANS 3001 Method		20 20				
	75 mm	100				0.0 0.1 1.0 10.0 100.0				
	63 mm	100	Opinion			Sieve Size				
bu	50 mm	100	0							
assing	37.5 mm	100				CBR Chart				
Ра	28 mm	100								
ge	20 mm	100				8				
Percentage	14 mm	100								
Ser	5 mm	99								
ero	2 mm	92								
Δ.	0.425 mm	78				0				
	0.075 mm	57.4				Compaction (%)				
		Material I	ndicators - (S	ANS 3001 Method	d PR5)					
Gra	ding Modulus *	0.72				Sieve Analysis				
Coa	arse Sand Soil-Mortar (%)	15								
			y Limits - (SAN	NS 3001 Method (GR10)					
	uid Limit (%)	43								
	sticity Index (%)	12				g 40				
Line	ear Shrinkage (%)	6.0		Method GR30,GR40 - SCALPED)		80 40				
	Mary Dry Danaity (1. (3)	Material Strength 1750	- (SANS 3001	Method GR30,GR4	0 - SCALPED)					
0	Max Dry Density (kg/m ³)					0.0 0.1 1.0 10.0 100.0 Sieve Size				
MDD	Optimum Moisture Content (%) Mould Moisture Content (%)	13.3 13.3			┨────┤──					
	Relative Compaction (%)	100.0				CBR Chart				
Α	Swell (%)	6.0								
	Relative Compaction (%)	94.8				· · · · · · · · · · · · · · · · · · ·				
в	Swell (%)	8.3				CBR (%)				
	Relative Compaction (%)	90.6								
С	Swell (%)	9.2								
-	@100% Max Dry Density	2								
	@98% Max Dry Density	2				Compaction (%)				
BR	@95% Max Dry Density	1				• 87338				
CB	@93% Max Dry Density	1								
	@90% Max Dry Density	Wearing Course Graph (TRH 20)								
	,	G 500 - Slippery 5 4500 - Slippery 7 350 - Good 2 300 - (Max bo Durba)								
In	situ Moisture Content (%)			Condition		9 300 - Good (May be Dusty)				
		ssification Of The	Material Based	Only On The Tests	Results Above	A 250 - Erodible (Way be Daty) Ravels Ravels				
	COLTO Specification:	Not Classified				St 150 - Good -				
	AASHTO System	A-7-5								
	Unified System	ML				0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coofficient (Gc)				
 Tes 	ts marked with a (*) are N	OT SANAS Accre	edited results	•		Grading Coefficient (Gc)				

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

-	OUTENI	<u>R-CBR-1-9</u> Jun-23				
	Registration No. 95/077 Materials Testing	742/07		y) Llu.		fsanas
			aw 2496 Caa	na Industria 65	26	Reling Littleminy
ENII LAB	Tel: 044 8743274 :					za T0347
040			rig : e-ma		-	
	Outeniqua Geotechnic	al Services		Project :		the Thembalethu Bulk Sewer PH3 & 4 - George Municipal
stom	P O Box 964				22/11/2023	
	Knysna			Date Reported :		
	6570			Req. Number :	4102/23	
tentio	on : Iain Paton			No. of Pages :	7/8	
		CAL		<u>REPORT</u> EARING RATI	<u>0</u>	
San	nple Position (SV)	TP7	COLTO:			87339
	oth (mm)	900-1600	Not			Sieve Analysis
San	nple No	87339	Classified		-	100
Ś	Source	In-sit				P 80
ial:		Dark Yellowish Orang	de Stained Black			
iter	Soil Type	Silty Sandy				
Σ	Source Colour Soil Type Classification	Existi				B 80 B 80 B 80 B 80 B 80 B 80 B 80 B 80
				ANS 3001 Method		<u>کو</u> 20
	75 mm	100				0.0 0.1 1.0 10.0 100.0
I	63 mm	100	Opinion		} ───┤	Sieve Size
b	50 mm	100	0			<u> </u>
Passing	37.5 mm	100				CBR Chart
as	28 mm	100				
ag	20 mm	100				
ercentage	14 mm	100				5 9 5 52 94 96 98 100 10 2
erce.	5 mm	99				
Ъ	2 mm	86				
	0.425 mm	57				Compaction (%)
	0.075 mm	36.0				
0.10	dia a Madulua *		ndicators - (S	ANS 3001 Method	a PR5)	
	ding Modulus *	1.21				Sieve Analysis
COa	arse Sand Soil-Mortar (%)	34		NS 3001 Method (
Liau	vid Limit (0/)		Limits - (SAI		GR 10)	
	uid Limit (%)	38				
	sticity Index (%)	13 6.5				80 40
LINE	ear Shrinkage (%)	Material Strength - (SANS 3001				20 20
	Mary Dry Danathy (L. (3)		- (SANS 3001	Method GR30,GR4	0 - SCALPED)	
0	Max Dry Density (kg/m ³)	1868				0.0 0.1 1.0 10.0 100.0 Sieve Size
MD	Optimum Moisture Content (%) Mould Moisture Content (%)	11.2 11.2				
						CBR Chart
Α	Relative Compaction (%)	100.0				10
I	Swell (%)	2.9				
в	Relative Compaction (%)	95.1				CBR (%)
	Swell (%) Relative Compaction (%)	3.4			┨────┤──	8
С		91.7				
<u> </u>	Swell (%)	3.7			┨────┤──	
	@100% Max Dry Density	4				0 2 Compaction (%)
CBR	@98% Max Dry Density	2			┨────┤──	
	@95% Max Dry Density	1				• 87339
⁻	@93% Max Dry Density	1				550 Wearing Course Graph (TRH 20)
	@90% Max Dry Density	1				3 550 3 500 5 500 5 Slippery
L		1	Material	Condition	1 1	5 400 -
In	situ Moisture Content (%)					Good Good (May be Dusty)
		ssification Of The	Material Based	Only On The Tests	Results Above	Le 250 - Erodible
	COLTO Specification:	Not Classified				Social Constraints Co
L	AASHTO System	A-6				
L	Unified System	SM				0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
Tes	ts marked with a (*) are N	NOT SANAS Accre	edited results			Grading Coefficient (Gc)

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

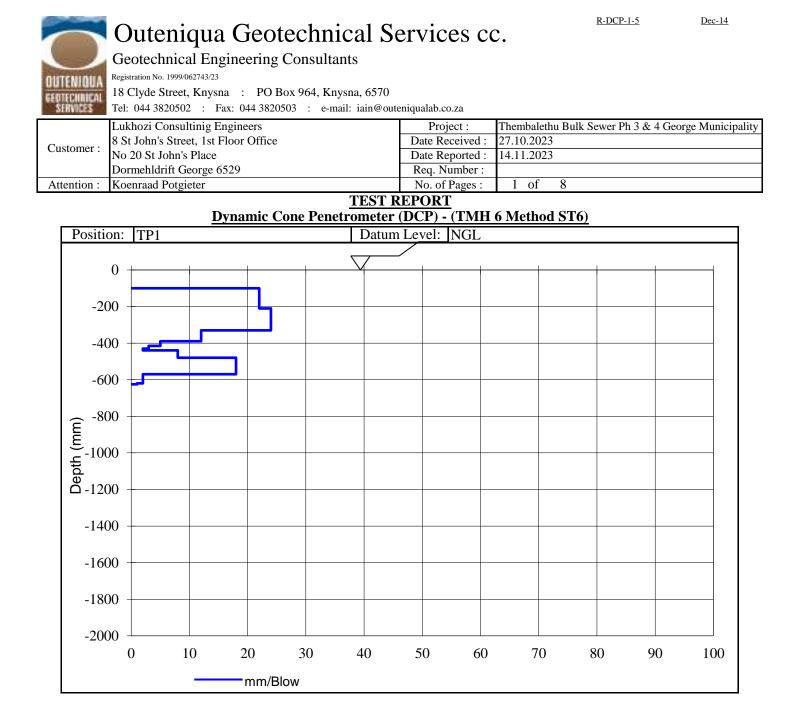
2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

NOUTENDUCALAB (Pty) Ltd. Registration No. 930774207 Microthal Street, George : PO Box 3186, George Industria, 6538 Total Testing Laboratory Microthal Street, George : PO Box 3186, George Industria, 6538 Duterique Geotechnical Services Diverique Geotechnical Services Diversition (SV Colspan="2">Test: 044 874577 2: e-mail: Itervelyin@outenical.co.za Diversition (SV Colspan="2">Test: 044 874577 2: e-mail: Itervelyin@outenical.co.za Test: 044 974274 2: download Microthal Street, Colspan="2">Test: 044 974577 2: e-mail: Itervelyin@outenical.co.za Test: 044 974274 2: download Color: download Color: download Color: download Microthal Street, 043740 Test: 044 97474 1: download <th>-</th> <th></th> <th><u>R-CBR-1-9</u> Jun-23</th>	-		<u>R-CBR-1-9</u> Jun-23								
Materials Testing Laboratory Constraints Const					y) Lla.		Acanac				
B Mirrorball Street, George : P. 20 Box 3186, George Industria, 6536 Total Dutariqua Geotechnical Services Project: Insumitinguada con a Total Ustomet P C Box 964 Date Reported 2 12011/2023 Control Ustomet Date Reported 2 12011/2023 Rep. Number : 4102/23 Rep. Number : 4102/23 Ustomet No. of Pages : 188 Insummet reported in the Number : 4102/23 Rep. Number : 4102/23 Son of Pages : 188 Rep. Number : 4102/23 Rep. Number : 4102/23 Rep. Number : 4102/23 Son of Pages : 188 Rep. Number : 4102/23 Rep. Number : 4102/23 Rep. Number : 4102/23 Sample No 87340 Classified Instrument reported in the Number : 188 Instrument reported in the Number : 188 Sample No 87340 Classified Instrument reported in the Number : 188 Instrument reported in the Number : 188 Sample No 87340 Classified in the Instrument reported in the Number : 188 Instrument reported in the Number : 188 Instrument reported in the Number : 188 Sample No 87340 Classified in the Instrument reported in the Number : 188 Instrument reported in the Number : 188 Instrument reported in the Number : 188 Samm 1000 Instrument repor			- Sallas								
Tel: 044 8743274 : Fax: 044 874579 : e-mail: Ievelyn@outeniqualab.co.za T0347 ustor: P0 Bax 564 P0 Bax 564 Date Received : E211/2023 Executived in Thermatelum filterate the filterateta the filterate the filterateta the filterate the filterateta t											
Outenique Geotechnical Services P O Box 964 (Nysna 6570 Project: Poble Received: PO Box 964 (Nysna 6570 Project: Poble Received: PO Box 964 (Nysna 6570 Poble Received: Poble Received: PO Box 964 (Nysna 6570 Poble Received: Poble Received: Pobl	TENI						T0347				
P C Box 964 Brypaa Date Reported: 22/11/2023 Earry Port (PV) Patholic Provided	Date			19 . e-ma							
Usioner: Krysna 6570 ttention : Jain Paton Itention : Jain Pat			al Services				the Thembalethu Bulk Sewer PH3 & 4 - George Municipality				
6570 Req. Number: H102/223 itention: Jain Paton No. of Pages: Jain Paton TEST REPORT CALIFORNIA BEARING RATIO Sample Position (SV) TP8 COLTO: Depth (mm) 0-1220 Not Sample No 87340 Iteration gr gr gr Source In-situ Iteration gr gr gr source Iteration Iteration gr gr gr source Iteration Iteration gr gr gr gr source Iteration Iteration gr gr gr gr source Iteration Iteration gr gr	uston										
titention : lain Paton IND. of Pages : B/8 TEST TALIFORNIA BEARING RATIO Sample Position (SV) TP8 COLTO: Sample Position (SV) TP8 COLTO: Sample No 87340 Lassified Colour Light Brown Light Brown Classification Existing Classification Existing Classification Existing Classification Existing Classification Soft Type Sitty Sandy Gravel Existing Classification Train 100 S 50 mm 100 Classified 28 mm 100 Classified C											
TEST REPORT CALIFORNIA BEARING RATIO Sample Position (SV) TP8 ColTO: Not Not Sample No 87340 Itessified segg Source In-situ Itessified segg Source In-situ Itessified segg Source Itesting Itesting Classified Existing Itesting Itesting Imm 100 Itesting Itesting Itesting <	ttonti										
CALLPORING BEARING RATIO Sample Position (SV) 0 0 0 0 87340 Sample Position (SV) 0 1 0 0 0 0 Sample No 87340 In-situ 1 0	Menno			TEST D		0/0					
Depin (mm) 0-1200 Not Sample No 67340 Classified In-situ In-situ In-situ gi gi gi Source Light Brown gi gi Colour Light Brown gi gi Source Existing T/5 mm 100 gi Somm 99 gi Arbitron 100 gi Arbitron 100 gi Somm 100 <			CAL			0					
Depin (mm) 0-1200 Not Sample No 67340 Classified In-situ In-situ In-situ gi gi gi Source Light Brown gi gi Colour Light Brown gi gi Source Existing T/5 mm 100 gi Somm 99 gi Arbitron 100 gi Arbitron 100 gi Somm 100 <	Sar	nple Position (SV)	TP8	COLTO:			87340				
Sample No. 67340 Classified Institution Classified Colour Classified Light Brown Surve Colour Classified Classified Colour Classified Classified Colour Classified Classified Colour Classified											
g Source In-stru Uight Brown Stilly Sandy Gravel Fight Brown Stilly Sandy Gravel Existing The structure Material Indicators - (SANS 3001 Method GR1) Image: Conserve the structure Som m 100 Som m 100 Som m 100 Som m 100 Som m Som m 100 Som m 100 Som m Som m Som m 100 Som m 100 Som m Som m Som m Som m 100 Som m 100 Som m Som m<				Classified							
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Cols							P 80				
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Cols	rial:	Colour	Light Br	own			·				
Material Indicators - (SANS 3001 Method GR1) Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Cols	ate	Soil Type	•								
Induction inductors ' (SANS 3001 method GR1) T5 mm 100 6 63 mm 100 6 90 0 37.5 mm 100 91 0 37.5 mm 100 92 0 mm 100 0 93 5 mm 99 0 0.425 mm 59 0 0.425 mm 59 0 0.425 mm 59 0 0.425 mm 59 0 0.425 mm 52.6 0 10.075 mm 32.6 0 Caraes Sand Soil-Mortar (%) 32 0 11ear Shrinkage (%) 6.0 0 11ear Shrinkage (%) 6.0 0 11ear Shrinkage (%) 8.4 0 11ear Shrinkage (%) 8.4 0 11ear Shrinkage (%) 3.3 0 11ear Shrinkage (%) 3.3 0 <t< td=""><td>Ĕ</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ĕ										
PS mm 100 s 00 0					ANS 3001 Method	d GR1)					
S0 mm 100 CBR Chart 20 mm 100 100 20 mm 100 100 37.5 mm 100 100 20 mm 100 100 14 mm 100 100 2.7 mm 99 100 0.425 mm 59 100 0.425 mm 59 100 0.75 mm 32.6 100 Caracing Modulus * 1.22 100 Caracing Modulus * 1.22 Caracing Modulus * 1.22 100 Inear Shrinka		75 mm				, 	0.0 0.1 1.0 10.0 100.0				
L2 22 mm 100 6 20 mm 100 14 mm 100 14 mm 0.25 mm 99 99 0.425 mm 59 99 1.41 min 1.22 90 Coarse Sand Soil-Montar (%) 32 90 1.100 min Atterberg Limits - (SANS 3001 Method GR10) 90 Liquid Limit (%) 38 90 Plasticity Index (%) 6.0 12 Linear Shrinkage (%) 6.0 100.0 Mould Moisture Content (%) 8.4 90 Optimum Moisture Content (%) 8.4 90 Mould Moisture Content (%) 8.4 90 @ 90% Max Dry Density 3 90 @ 90% Max Dry Density 3 9		63 mm	100	Opin			Sieve Size				
L2 22 mm 100 6 20 mm 100 14 mm 100 14 mm 0.25 mm 99 99 0.425 mm 59 99 1.41 min 1.22 90 Coarse Sand Soil-Montar (%) 32 90 1.100 min Atterberg Limits - (SANS 3001 Method GR10) 90 Liquid Limit (%) 38 90 Plasticity Index (%) 6.0 12 Linear Shrinkage (%) 6.0 100.0 Mould Moisture Content (%) 8.4 90 Optimum Moisture Content (%) 8.4 90 Mould Moisture Content (%) 8.4 90 @ 90% Max Dry Density 3 90 @ 90% Max Dry Density 3 9	ing	50 mm	100				CBP Chart				
L2 22 mm 100 6 20 mm 100 14 mm 100 14 mm 0.25 mm 99 99 0.425 mm 59 99 1.41 min 1.22 90 Coarse Sand Soil-Montar (%) 32 90 1.100 min Atterberg Limits - (SANS 3001 Method GR10) 90 Liquid Limit (%) 38 90 Plasticity Index (%) 6.0 12 Linear Shrinkage (%) 6.0 100.0 Mould Moisture Content (%) 8.4 90 Optimum Moisture Content (%) 8.4 90 Mould Moisture Content (%) 8.4 90 @ 90% Max Dry Density 3 90 @ 90% Max Dry Density 3 9	ISSI	37.5 mm	100								
0.425 mm 59 10 20 24 96 98 100 102 0.075 mm 32.6 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 100 <td< td=""><td>Δ.</td><td></td><td>100</td><td></td><td></td><td></td><td></td></td<>	Δ.		100								
0.425 mm 59 10 20 24 96 98 100 102 0.075 mm 32.6 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 100 <td< td=""><td>ge</td><td>20 mm</td><td>100</td><td></td><td></td><td></td><td>(%)</td></td<>	ge	20 mm	100				(%)				
0.425 mm 59 0	Jta	14 mm	100								
0.425 mm 59 10 20 24 96 98 100 102 0.075 mm 32.6 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 100 <td< td=""><td>cer</td><td>5 mm</td><td>99</td><td></td><td></td><td></td><td></td></td<>	cer	5 mm	99								
0.425 mm 59 0.075 mm 32.6 0.075 mm 32.6 0.075 mm 0.075 mm<	Per	2 mm	87								
Material Indicators (SANS 3001 Method PR5) Grading Modulus * 1.22 Coarse Sand Soil-Mortar (%) 32 Atterberg Limits (SANS 3001 Method GR10) Liquid Limit (%) 38 Plasticity Index (%) 12 Linear Shrinkage (%) 6.0 Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Strength (SANS 3001 Method GR30, GR40 - SCALPED) Material Moisture Content (%) 8.2 Relative Compaction (%) 95.4 Swell (%) 3.8 @ 100% Max Dry Density 3 @ 100% Max Dry Density 2 @ 98% Max Dry Density 2 <td></td> <td>0.425 mm</td> <td>59</td> <td></td> <td></td> <td></td> <td></td>		0.425 mm	59								
Grading Modulus * 1.22 Coarse Sand Soil-Mortar (%) 32 Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 38 Plasticity Index (%) 12 Linear Shrinkage (%) 6.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) 0.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) 0.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) 0.0 0.1 1.0 100 100 100 100 100 100 100 100 100 100 100.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 <		0.075 mm					Compaction (%)				
Coarse Sand Soil-Mortar (%) 32 Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 38 Image: Coarse Sand Soil-Mortar (%) 12 Liquid Limit (%) 38 Image: Coarse Sand Soil-Mortar (%) 12 Linear Shrinkage (%) 6.0 Image: Coarse Sand Soil-Mortar (%) 12 Linear Shrinkage (%) 6.0 Image: Coarse Sand Soil-Mortar (%) 100.0 Q Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Image: Coarse Sand Soil-Mortar (%) 0.0 Q Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Image: Coarse Sand Soil-Mortar (%) 0.0 Q Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Image: Coarse Sand Soil-Mortar (%) 0.0 Q Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Image: Coarse Sand Soil-Mortar (%) 0.0 0.1 1.0 10.0 Swell (%) 2.8 Image: Coarse Sand Soil-Max Dry Density 3.8 Image: Coarse Sand Soil-Max Dry Density 2 Image: Coarse Sand Soil-Max Dry Density 3.8				ndicators - (S	ANS 3001 Metho	d PR5)					
Atterberg Limits - (SANS 3001 Method GR10) Liquid Limit (%) 38 Plasticity Index (%) 12 Linear Shrinkage (%) 6.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) 0 Optimum Moisture Content (%) 8.4 Relative Compaction (%) 100.0 Swell (%) 2.8 B Swell (%) 3.3 C Relative Compaction (%) 91.1 C Swell (%) 3.8 @ 100% Max Dry Density 3 @ 20% Max Dry Density 3 @ 20% Max Dry Density 2 @ 20% Max Dry Density 1 Collassification Of The Material Based Only On The Tests Results Above 2 @ 20% Max Dry Density 1 2 @ 20% Max Dry Density 1 2 Insitu Moisture Content (%) 3 4 4 Material Condition 4.2-6 4 5 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Plasticity Index (%) 12 Linear Shrinkage (%) 6.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Q Max Dry Density (kg/m ³) 1978 Optimum Moisture Content (%) 8.4 Mould Moisture Content (%) 8.4 Relative Compaction (%) 100.0 Swell (%) 2.8 Relative Compaction (%) 95.4 Swell (%) 3.3 C Relative Compaction (%) 91.1 Swell (%) 3.8 C Relative Compaction (%) 91.1 Swell (%) 3.8 Max Dry Density 3 @ 95% Max Dry Density 3 @ 95% Max Dry Density 2 @ 93% Max Dry Density 1 Material Condition Insitu Moisture Content (%) Material Condition Material Condition Material Condition AASHTO System A-2-6 Unified System SM	Coa	arse Sand Soil-Mortar (%)									
Plasticity Index (%) 12 Linear Shrinkage (%) 6.0 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED) Q Max Dry Density (kg/m ³) 1978 Optimum Moisture Content (%) 8.4 Mould Moisture Content (%) 8.4 Relative Compaction (%) 100.0 Swell (%) 2.8 Relative Compaction (%) 95.4 Swell (%) 3.3 C Relative Compaction (%) 91.1 Swell (%) 3.8 C Relative Compaction (%) 91.1 Swell (%) 3.8 Max Dry Density 3 @ 95% Max Dry Density 3 @ 95% Max Dry Density 2 @ 93% Max Dry Density 1 Material Condition Insitu Moisture Content (%) Material Condition Material Condition Material Condition AASHTO System A-2-6 Unified System SM				y Limits - (SAI	NS 3001 Method (GR10)	.5g 80				
Material Strength - (SANS 3001 Method GR30, GR40 - SCALPED) Q Max Dry Density (kg/m³) 1978 0.0 0.1 1.0 10.0 10.0 100.0 Q Optimum Moisture Content (%) 8.4 0 0 0.1 Sive Size A Relative Compaction (%) 100.0 0 0 0.0 0.1 Sive Size B Relative Compaction (%) 95.4 0											
Material Strength - (SANS 3001 Method GR30, GR40 - SCALPED) Q Max Dry Density (kg/m³) 1978 0.0 0.1 1.0 10.0 10.0 100.0 Q Optimum Moisture Content (%) 8.4 0 0 0.1 Sive Size A Relative Compaction (%) 100.0 0 0 0.0 0.1 Sive Size B Relative Compaction (%) 95.4 0							40				
Max Dry Density (kg/m ³) 1978 0 <th< td=""><td>LINE</td><td>ear Shrinkage (%)</td><td colspan="2"></td><td colspan="2">Method CB30 CB40 SCALEED</td><td>20 20</td></th<>	LINE	ear Shrinkage (%)			Method CB30 CB40 SCALEED		20 20				
Q optimum Moisture Content (%) 8.4 Content (%) 8.4 Mould Moisture Content (%) 8.2 Content (%) 8.2 A Relative Compaction (%) 100.0 Content (%) 2.8 B Relative Compaction (%) 95.4 Content (%) 3.3 Content (%) 3.3 C Relative Compaction (%) 91.1 Content (%) 3.8 Content (%) 87340 Weil (%) 3.8 Content (%) 87340 Content (%) 87340 Content (%) Weil (%) Sale Content (%) Material Condition Steps (%) Steps (%) Steps (%) Steps (%) Weil (%) Sale Content (%) Content (%) Steps (%) Steps (%) Steps (%) Weil (%) Sale Content (%) Content (%) Content (%) Steps (%) Steps (%) Steps (%) Steps (%) Weil (%) Soil Classification Of The Material Based Only On The Tests Results Above Steps (%) Steps (%		Max Dry Danaity (har /ar 3)		- (SANS 3001	Method GR30,GR4	0 - SCALPED)					
Modula Molsture Content (%) 3.2 CBR Chart A Relative Compaction (%) 100.0 CBR Chart B Relative Compaction (%) 95.4 Carter of the state of	9	Max Dry Density (kg/m ⁻)									
Modula Molsture Content (%) 3.2 CBR Chart A Relative Compaction (%) 100.0 CBR Chart B Relative Compaction (%) 95.4 Carter of the state of	μ	Mould Moisture Content (%)									
A Swell (%) 2.8 B Relative Compaction (%) 95.4 Swell (%) 3.3 9 C Relative Compaction (%) 91.1 Swell (%) 3.8 9 @ 100% Max Dry Density 3 9 @ 98% Max Dry Density 3 9 @ 98% Max Dry Density 2 9 @ 99% Max Dry Density 2 9 @ 93% Max Dry Density 2 9 @ 93% Max Dry Density 2 9 @ 90% Max Dry Density 1 9 Material Condition 90 90 Insitu Moisture Content (%) 1 90 Coll Classification Of The Material Based Only On The Tests Results Above 90 90 Material Condition 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90											
B Relative Compaction (%) 95.4 Image: Compaction (%) 95.4 C Relative Compaction (%) 91.1 Image: Compaction (%) 91.1 C Relative Compaction (%) 91.1 Image: Compaction (%) 91.1 Weill (%) 3.8 Image: Compaction (%) 91.1 Image: Compaction (%) 2 @ 100% Max Dry Density 3 Image: Compaction (%) 2 Image: Compaction (%) 2 @ 95% Max Dry Density 2 Image: Compaction (%) 87340 Image: Compaction (%) @ 93% Max Dry Density 2 Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Image: Relative Content (%) 1 Image: Compaction (%) Image: Compaction (%) Image: Compaction (%) Material Condition Image: Compaction (%) Material Condition Image: Compaction (%) Image: Compaction (Α										
B Swell (%) 3.3 and the set of the											
C Relative Compaction (%) 91.1 Image: Compaction (%) 91.1 Swell (%) 3.8 Image: Compaction (%) 3.8 Image: Compaction (%) 0 3.8 Image: Compaction (%) Image: Compaction (%) 0 0 0 0 Image: Compaction (%) 0 0 0 0 0 Image: Compaction (%) 0 <td>В</td> <td></td> <td></td> <td> </td> <td></td> <td> </td> <td>та та</td>	В						та та				
C Swell (%) 3.8	-	Relative Compaction (%)									
Image: Weight of the system	С										
Image: Weak of the second s	-										
Image: Construction Image: Construction<							Compaction (%)				
O @ 93% Max Dry Density 2 Image: Construction of the material condition Insitu Moisture Content (%) Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Construction of the material Based Only On the Tests Results Above Image: Constest Above Imag	BR						● 87340 ■				
@ 90% Max Dry Density 1 500 Support Material Condition 500 Support Support Insitu Moisture Content (%) Soil Classification Of The Material Based Only On The Tests Results Above 500 Support COLTO Specification: Not Classified Support Good Support AASHTO System A-2-6 State State State State Unified System SM SM State State O 4.8 to 20.4 to 2	Ū										
Material Condition 450 Slippery Insitu Moisture Content (%) Soil Classification Of The Material Based Only On The Tests Results Above 600 COLTO Specification: Not Classified 800 AASHTO System A-2-6 800 Unified System SM 0 4							550				
Soil Classification Of The Material Based Only On The Tests Results Above 250 Ended Coll		, <u>, , , , , , , , , , , , , , , , , , </u>	500 - Slippery								
Soil Classification Of The Material Based Only On The Tests Results Above 250 Ended Coll	In	situ Moisture Content (%)	T 350 Good								
COLTO Specification: Not Classified Good AASHTO System A-2-6 0 Ravels and Corrugates Unified System SM 0 4 8 120 24 28 32 36 40 44 48			ssification Of The	Material Based	Only On The Tests	Results Above	A 250 - Erodible (Way be Disty) Ravels Ravels				
Unified System SM 0 4 8 12 16 20 24 28 32 36 40 44 48							S 150 - Good -				
Unified System SM 0 4 8 12 16 20 24 28 32 36 40 44 48							S 0 Ravels and Corrugates				
Tests marked with a (*) are NOT SANAS Accredited results.		Unified System					0 4 8 12 16 20 24 28 32 36 40 44 48				
	 Tes 	sts marked with a (*) are N	OT SANAS Accre	edited results			Grading Coefficient (Gc)				

Ruaan Lesch

Technical Signatory

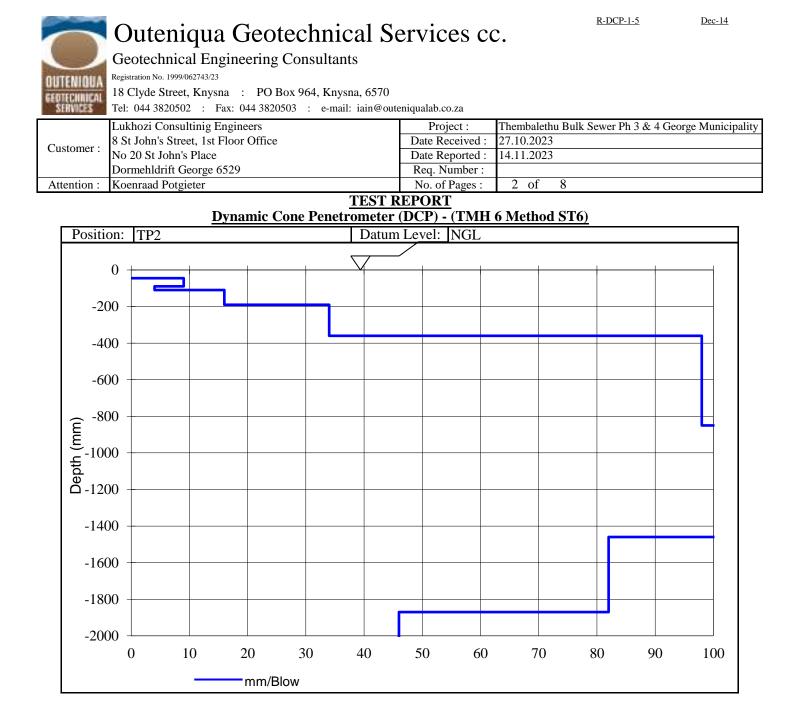
For Outeniqua Lab (Pty) Ltd.


Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

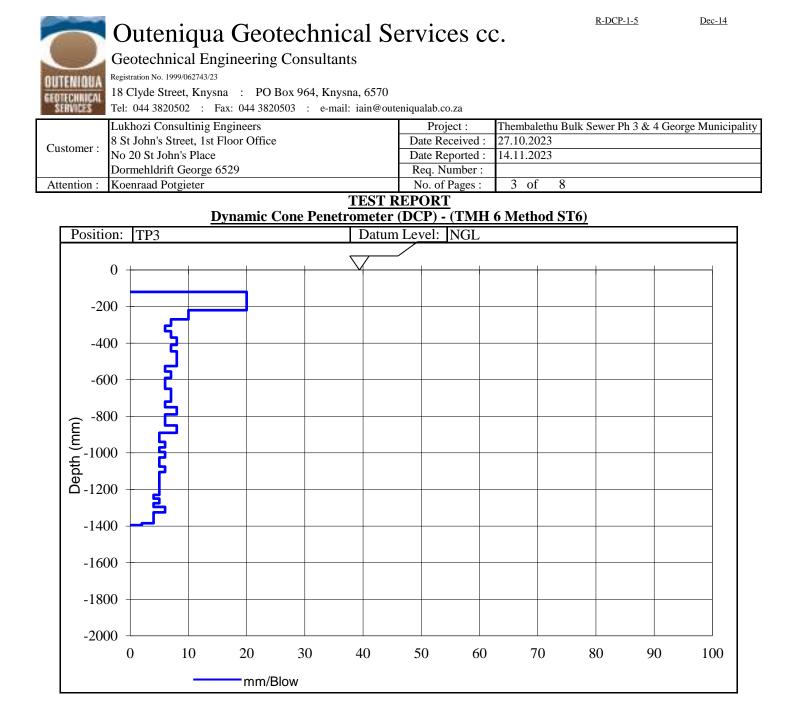
1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

Appendix 4

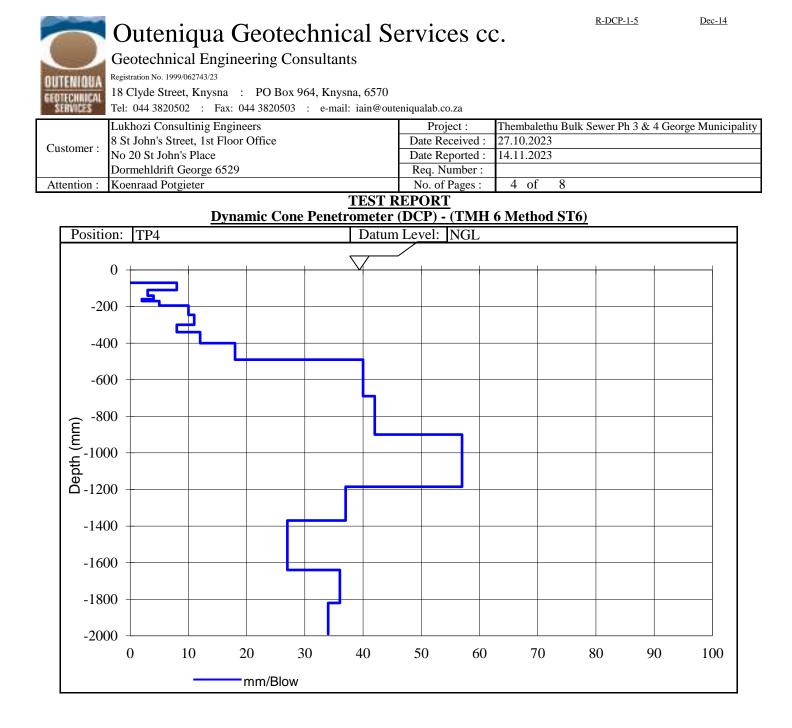

DCP test data

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

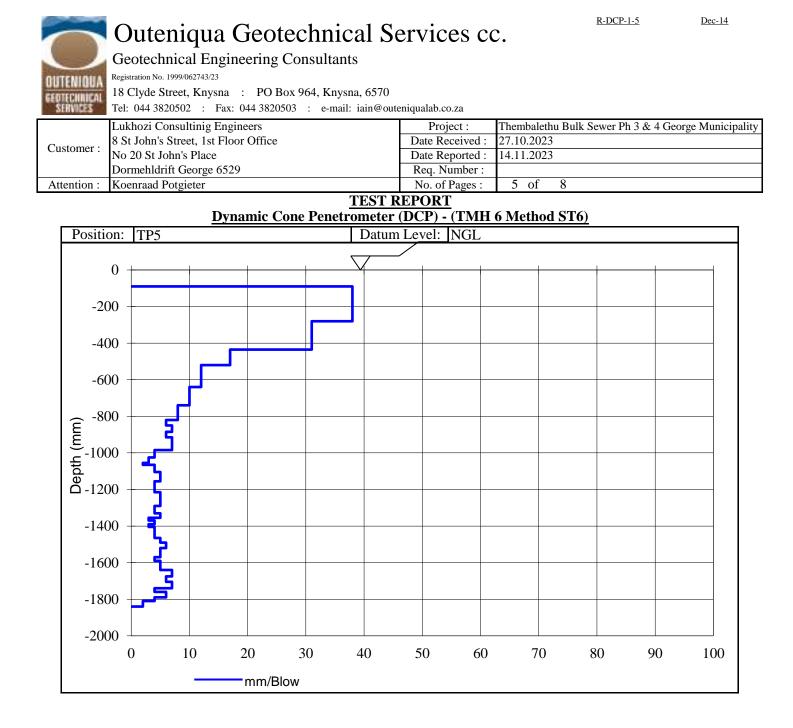

3.

therefrom or for any consequence thereof.

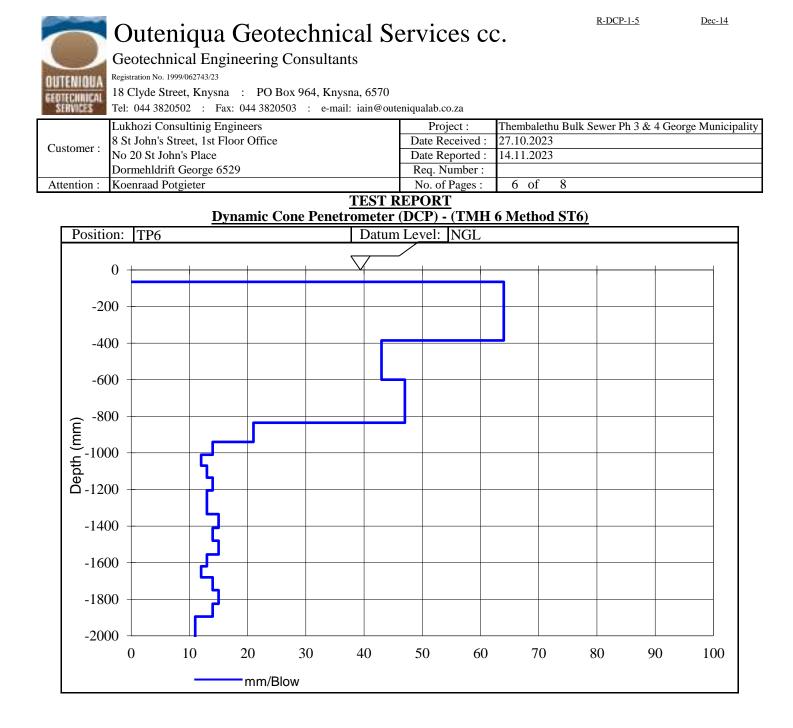
This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


3. therefrom or for any consequence thereof.

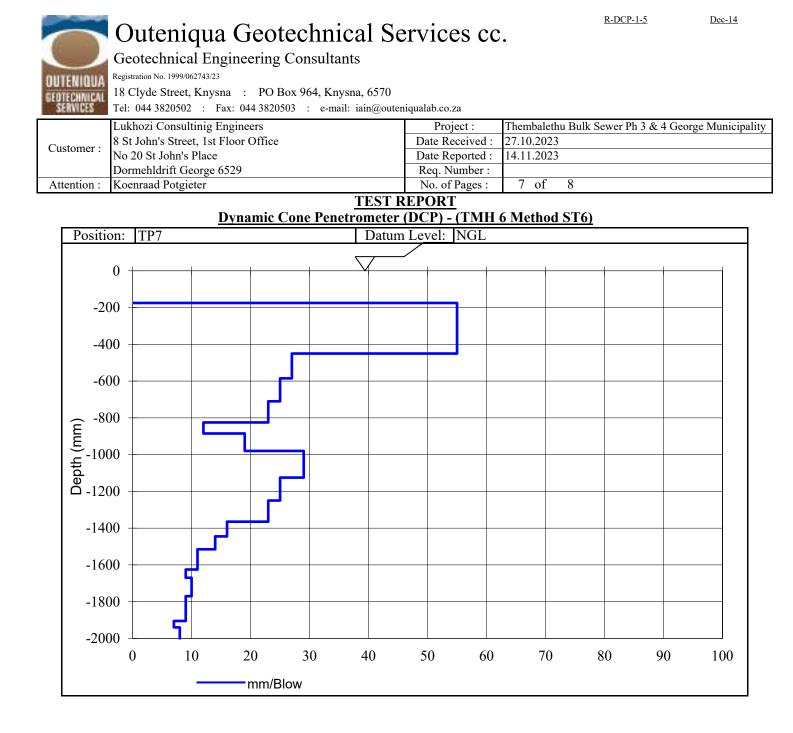
This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn


3.

therefrom or for any consequence thereof.


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

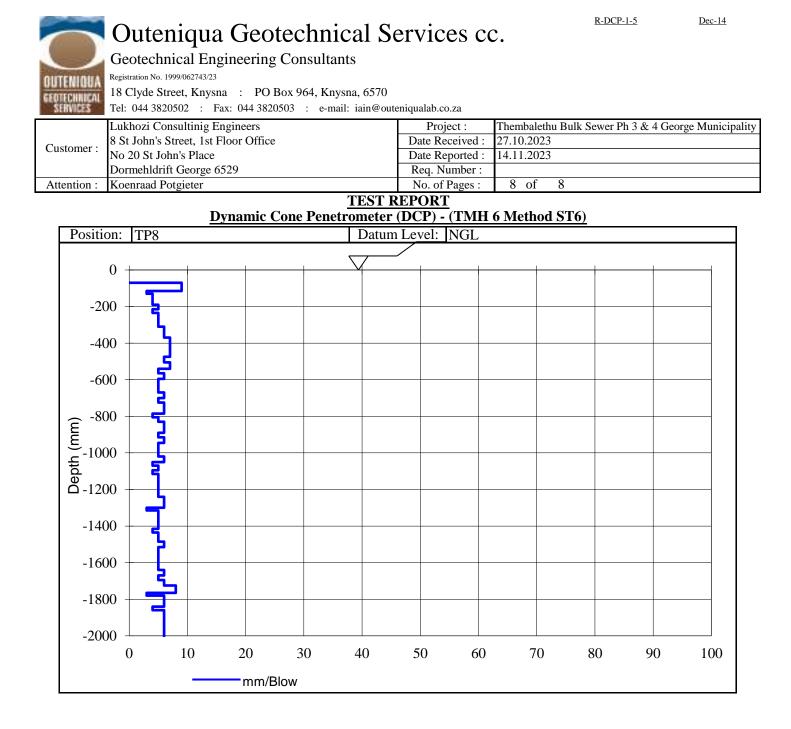
3. therefrom or for any consequence thereof.


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.



I Paton (Member) For Outeniqua Geotech. Services cc. Technical Signatory

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any errorneous conclusions drawn therefrom

quence thereof. or for any con

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.

therefrom or for any consequence thereof.

DESIGN FLOW CALCULATIONS (Section K.4 - Red Book 2019 [method (iii) Sewer flow and peak factor method]

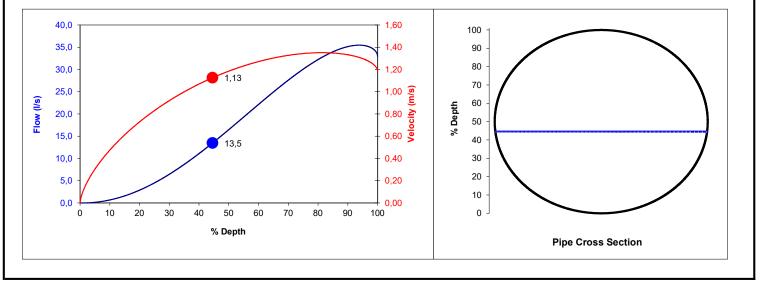
FULL DEVELOPMENT (ALL ERVEN) SEWER FLOW: density Land Use Unit Q Erven PDDWF PF IPDWF Area Unit units/ha Hydrograph kl/d/unit No. kl/day 2 kl/day Res. ha Low Cost , High Density Low Cost , High Density Low Cost , High Density Old Brick Area Thembalethu Area 2 6,7 50,3 UH4 UH4 0,29 0,29 412 250 119,5 72,5 61,9 239,0 5,0 145,0 Thembalethu Area 5 - 6ab 68,0 13,9 UH4 0,29 152 44,1 88,2 472 814 236,1

GROUNDWATER INFILTRATION:

	inf rate	Unit	pipe /erf	Pipe Length	Pipe Ø			INF FLOW
	L/min/m/mØ		T K.11	m	m			kl/day
Old Brick Area	0,03	UH4	10	4120	0,2			35,60
Thembalethu Area 2	0,03	UH4	10	2500	0,2			21,60
Thembalethu Area 5 - 6ab	0,03	UH4	10	1520	0,2			13,13
	1		1	I		I	1	70

	IPDWF	INF FLOW	TOT	IPWWF		IPWWF
	kl/day	kl/day	kl/day	kl/day		l/s
Old Brick Area	239,0	35,60	274,6	392,2		4,5
Thembalethu Area 2	145,0	21,60	166,6	238,0		2,8
Thembalethu Area 5 - 6ab	88,2	13,13	101,3	144,7		1,7
	_					
	472,1	70,33	542,4	612,8		9,0

PROJECT DATA


Project Name:	THEMBALETHU BULK SEWER PHASE 3 AND 4 - PORTION 2
Project Number	1762
Pipe Description:	BULK LINE
Analysed By:	Siviwe Kulu
Date:	10-Apr-24
File Path:	P:\GG\1762 Thembalethu Bulk Sewer Phase 3 and 4\04 Design & Drawings\05 Sewer\Design Flows\1762_Circular Partial Pi

<u>INPUT</u>

Pipe Material:	uPVC	
Pipe Internal Diameter:	188,2	mm
Pipe Slope:	0,67	%
Mannings "n":	0,009	
Required Flow:	13,50	l/s

HYDRAULIC OUTPUT

Required Flow	13,50 l/s	Wetted Perimeter	0,275 m
Calculated Flow	13,49 l/s	Flow Area	0,012 m ²
Velocity	1,126 m/s	Specific Energy	148 mm
Flow Depth	84 mm	Froude Number	1,42
Flow Depth / Pipe Dia.	45 %	Flow Type	Supercritical
		••	•

