DEVELOPMENT OF THE KAREERAND BATTERY STORAGE ENERGY FACILITY AND ASSOCIATED INFRASTRUCTURE NEAR KLERKSDORP, NORTH WEST PROVINCE

Avifauna Baseline Report

February 2024

Compiled by: Pachnoda Consulting CC Lukas Niemand Pr.Sci.Nat

PO Box 72847 Lynwood Ridge Pretoria 0040 Prepared for: Kareerand BESS (Pty) Ltd

EXECUTIVE SUMMARY

Pachnoda Consulting cc was requested by Kareerand BESS (Pty) Ltd to compile an avifauna baseline report for the proposed construction of the Kareerand Battery Energy Storage (BESS) Facility, consisting of a BESS and solar photovoltaic (PV) infrastructure. The Kareerand BESS facility will be located approximately 22 km east of Klerksdorp within the North West Province.

The objectives of the avifaunal study were to: (a) describe the avifauna associations in the project area according to species composition and richness prior to construction activities; (b) provide an inventory of bird species occurring in the project area including species prone towards collisions with the proposed infrastructure; (c) provide an impact assessment; and (d) provide an indication of the occurrence of species of concern (e.g. threatened and near threatened species).

Baseline avian data was obtained from point count and ad hoc sampling techniques during the months of August/September 2023, November/December 2023 and January 2024.

Seven avifaunal habitat types were identified on the study area and surroundings, consisting of open grassland with bush clumps (ranging from open savannoid grassland to rocky grassland), wetlands and floodplains, secondary grassland and Vachellia dominated bushveld. The wetlands and floodplains (e.g. Koekemoerspruit) provided foraging, roosting and breeding habitat for many waterbird and wading bird taxa, although the occurrence of such taxa on the BESS facility was considered to be low. Approximately 286 bird species were expected to occur in the wider study area, of which 210 species were observed in the area. The expected richness included 12 threatened or near threatened bird species. However, the occurrence of threatened and near threatened bird species was predicted to be low, apart from the regionally vulnerable Lanner Falcon (Falco biarmicus) which was regarded as a regular foraging visitor to the area. In addition, large sections of open grassland east of the Koekemoerspruit (along the proposed grid connection) provided suitable foraging habitat for Secretarybirds (Sagittarius serpentarius), although this species was regarded as uncommon in the area (sensu SABAP Reporting rates). Approximately,17 southern African endemics and 23 near-endemic species were expected to be present.

The main potential impacts associated with the facility and grid connection corridor are expected to be the following:

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction.
- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies).
- Collision with associated powerline (mainly overhead powerlines).

An evaluation of potential and likely impacts on the avifauna revealed that the impact significance was moderate to low after mitigation (depending on the type of impact). No fatal-flaws were identified during the assessment, although it was recommended that the proposed mitigation measures a be implemented during the construction and operational phase of the project.

TABLE OF CONTENTS

EXECUTIVE SUMMARYI							
TABLE (OF C	ONTENTS	. 111				
LIST OF FIGURESIV							
LIST OF	ТАВ	BLES	V				
LIST OF	APP	PENDICES	.VI				
DECLA	RATIO	ON OF INDEPENDENCE	.VII				
1. INT	1. INTRODUCTION						
1.1	Pro	JECT DESCRIPTION	1				
1.2	Obji	ECTIVES AND TERMS OF REFERENCE	2				
1.3	Sco	PE OF WORK	3				
2. ME	THO	DS & APPROACH	6				
2.1	LITE	RATURE SURVEY AND DATABASE ACQUISITION	6				
2.2	FIEL	d Methods	9				
2.3	SEN	SITIVITY ANALYSIS	12				
2.4	Lімі	TATIONS	13				
3. DES	SCRI	PTION OF THE AFFECTED ENVIRONMENT	14				
3.1	Loc	ALITY	14				
3.2	Reg	IONAL VEGETATION DESCRIPTION	14				
3.3	LAND	D COVER, LAND USE AND EXISTING INFRASTRUCTURE	15				
3.4	CON	SERVATION AREAS, PROTECTED AREAS AND IMPORTANT BIRD AREAS	17				
3.5	Ann	OTATIONS ON THE NATIONAL WEB-BASED ENVIRONMENTAL SCREEN	ING				
	Тоо	L	17				
4. RES	SULT	S AND DISCUSSION	19				
4.1	Avif	AUNAL HABITAT TYPES	19				
4.2	SPE	CIES RICHNESS AND PREDICTED SUMMARY STATISTICS	28				
4.3	Bird	SPECIES OF CONSERVATION CONCERN	32				
4.4	SPE	CIES ACCUMULATION CURVE	36				
4.5	Bird	ASSEMBLAGE STRUCTURE AND COMPOSITION	37				
4.6	PAS	SERINE BIRD DENSITIES	42				
4.7	Μov	EMENTS/DISPERSAL OF PRIORITY COLLISION-PRONE BIRDS	42				
4.8	AVIF	AUNAL SENSITIVITY	43				
4.9	Рот	ENTIAL IMPACTS ASSOCIATED WITH THE PROPOSED BESS FACILITY	46				
4.9.	1	Loss of habitat and displacement of birds at the BESS facility	47				
4.9.	2.	Creation of "new" avian habitat and bird pollution	47				
4.9.	3	Collision trauma caused by photovoltaic panels (the "lake-effect")	48				
4.9.	4	Interaction with overhead powerlines and reticulation	48				
4.10	COL	LISION-PRONE BIRD SPECIES	52				
4.11	Сим	IULATIVE IMPACTS	56				
4.12	REC	OMMENDED MITIGATION	58				
4.12	2.1	Loss of habitat and displacement bird taxa	58				
4.12	2.2	Creation of "new" avian habitat and bird pollution	59				
4.12	2.3	Collision trauma caused by photovoltaic panels (the "lake-effect")	59				
4.12	2.4	Power line interaction: collision and electrocution with power lines	59				
4.12	2.5	General mitigation measures	61				

2	1.13	OPINION REGARDING THE FEASIBILITY OF THE PROJECT	32
5.	REI	FERENCES	33

LIST OF FIGURES

Figure 1: A topocadastral map illustrating the geographic position of the proposed Kareerand BESS facility and grid connection corridor
Figure 2: A satellite image illustrating spatial position of the proposed Kareerand BESS facility and grid connection corridor
Figure 3: A map illustrating the quarter-degree grid cells that were investigated for this project
Figure 4: A map illustrating the pentad grids that were investigated for this project9
Figure 5: A map illustrating the spatial position of bird point counts located within the
study area as well as the locality of a passive acoustics recorder
Figure 6: A satellite image illustrating the regional vegetation type corresponding to the
development area and immediate surroundings. Vegetation type categories were defined by Mucina & Rutherford (2006; updated 2012)
Figure 7: A map illustrating the land cover classes (Geoterrainimage, 2020)
corresponding to the proposed study area
Figure 8: A map illustrating the spatial locality of nearby conservation areas to the study
area
Figure 9: The animal species sensitivity of the proposed BESS facility and grid corridor
according to the Screening Tool
Figure 10: The relative avian sensitivity of the development area and immediate
surroundings according to the Screening Tool
Figure 11: A habitat map illustrating the avifaunal habitat types on the project area (BESS facility and grid corridor)
Figure 12: A habitat map illustrating the avifaunal habitat types along the proposed grid
connection corridor – western area
Figure 13: A habitat map illustrating the avifaunal habitat types along the proposed grid
connection corridor – central area
Figure 14: A habitat map illustrating the avifaunal habitat types at the proposed BESS
facility and immediate surroundings
Figure 15: A collage of images illustrating examples of avifaunal habitat types observed
on the proposed study area: (a - d) open savannoid grassland with bush clump
mosaics, (e - h) rocky grassland with bush clump mosaics, (i - I) dense
microphyllous bushveld dominated by Vachellia karoo, (m - n) Vachellia erioloba
bushveld, (o – p) secondary/regenerating grassland (mainly confined to old
agricultural land), $(q - t)$ wetlands and floodplains confined to the Koekemoerspruit
and (u - x) wetlands and floodplains confined to a seep emanating from a slimes
Cam
rigure to: the species accumulation curve (SAC) (red line) for bird points sampled
ouning the survey sessions. The plue line represents an accumulation of one

during the survey sessions. The blue line represents an accumulation of one species for every additional point count. The black line is parallel to the blue one and is tangent to the SAC approximately after 24 counts (as represented by the

vertical red stippled line). The green stippled line represents the Michaelis-Menten Figure 17: A two-dimensional non-metric multidimensional scaling ordination (stress=0.14) of the relative abundances of bird species based on Bray-Curtis similarities obtained from point counts on the project area. It differentiates between four bird associations: (1) an association pertaining to floodplain habitat and riparian woodland (mainly confined to the Koekemoerspruit and nearby Vaal River), (2) an association confined to microphyllous (Vachellia) bushveld, (3) an association confined to rocky grassland with bush clump mosaics and (4) an association confined to open savannoid grassland with bush clump mosaics... 39 Figure 18: A map of the study site illustrating the occurrence and movements of priority Figure 19: A map illustrating the avifaunal sensitivity of the study area based on habitat types supporting bird taxa of conservation concern and important ecological Figure 20: A map illustrating the avifaunal sensitivity of the western section of the grid connection based on habitat types supporting bird taxa of conservation concern Figure 21: A map illustrating the avifaunal sensitivity of the central section of the grid connection based on habitat types supporting bird taxa of conservation concern and important ecological function. 45 Figure 22: A map illustrating the avifaunal sensitivity of the eastern section of the grid connection and the BESS facility based on habitat types supporting bird taxa of Figure 23: Two bird-friendly tower designs to be considered for the current project. 60 Figure 24: An example of a bird flight diverter to be used on the powerline: Viper live bird flapper......61

LIST OF TABLES

Table 1: A summary table of the total number of species, Red listed species (according					
to Taylor et al., 2015 and the IUCN, 2023), endemics and biome-restricted species					
(Marnewick et al., 2015) expected (sensu SABAP1 and SABAP2) to occur in the					
study area and immediate surroundings 29					
Table 2: Expected biome-restricted species (Marnewick et al, 2015) likely to occur on					
the study area and immediate surroundings					
Table 3: Bird species of conservation concern occurring in the broader study area					
which could collide and/ or become displaced by the proposed PV and grid					
infrastructure					
Table 4: Bird species of conservation concern that could utilise the study site based on					
their historical distribution range and the presence of suitable habitat. Red list					
categories according to the IUCN (2023)* and Taylor et al. (2015)**					
Table 5: Bird species with a frequency of occurrence greater than 50 % observed on					
the study site and immediate surroundings					
Table 6: Bird species with a high frequency of occurrence ("typical bird species") on					
the study area					

LIST OF APPENDICES

Appendix 1: A shortlist of bird species expected to be present on the study area and						
immediate surrounding. The list provides an indication of the species occurrence						
according to SABAP2 reporting rates. The list was derived (and modified) from						
species observed in pentad grids 2650_2645, 2650_2650, 2655_2645 and						
2655_2550 and from personal observations. The reporting rates include						
submissions made during the August/September and November/December 2023						
surveys						
Appendix 2: Preliminary density estimates of passerine birds recorded from the study						
site and immediate surroundings during August/September 2023 and						
November/December 2023						

DECLARATION OF INDEPENDENCE

I, Lukas Niemand (Pachnoda Consulting CC) declare that:

- I act as the independent specialist in this application to Kareerand BESS (Pty) Ltd;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have no vested financial, personal or any other interest in the application;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my
 possession that reasonably has or may have the potential of influencing any decision to be taken with
 respect to the application by the competent authority; and the objectivity of any report, plan or document
 to be prepared by myself for submission to the competent authority; and
- All the particulars furnished by me in this form are true and correct.

m

Lukas Niemand (Pr.Sci.Nat) 10 February 2024

Lukas Niemand is registered with The South African Council for Natural Scientific Professionals (400095/06) with more than 20 years of experience in ecological-related assessments and more than 15 years in the field of bird interactions with electrical and renewable energy infrastructure. He has conducted numerous ecological and avifaunal impact assessments including Eskom Transmission projects, hydro-electric schemes, solar farms and other activities in South Africa and other African countries.

1. INTRODUCTION

1.1 **Project Description**

Pachnoda Consulting cc was requested by Kareerand BESS (Pty) Ltd to compile an avifauna baseline report for the proposed construction of the Kareerand Battery Energy Storage (BESS) Facility, consisting of a BESS and solar photovoltaic (PV) infrastructure. The Kareerand BESS facility will be located approximately 22 km east of Klerksdorp within the North West Province (Figure 1).

The Kareerand BESS facility will have a total development footprint of up to approximately 25 ha and will have a maximum export capacity of up to 77 MW. The development area is situated within the City of Matlosana Local Municipality and the JB Marks Local Municipality. The site is accessible via existing tarred and gravel roads to the north-east of the site. These existing gravel roads will be ugraded to a maximum width of 8m.

The proposed Kareerand BESS facility will include the following infrastructure:

- PV modules and mounting structures (up to 10 ha).
- Inverters and transformers.
- Solid State Battery Energy Storage System (BESS) (up to 10 ha).
- Site and internal access roads (up to 8m wide).
- Operation and Maintenance buildings including a gate house and security building, control centre, offices, warehouses and workshops for storage and maintenance (up to 1 ha).
- Laydown areas (3 ha temporary and 1 ha permanent).
- A 132 kV facility substation (up to 1 ha).

The Kareerand BESS facility will be located on Portion 3 of the Farm Kareerand No. 444. In addition, the existing access road on Portion 3 of the Farm Kareerand No. 444, Portion 4 of the Farm Kareerand 444, Portion 16 of the Farm Kromdraai 420, Portion 17 of the Farm Kromdraai 420, Farm Umfula No. 575, Portion 20 of Farm Umfula No. 567 and Portion 56 of the Farm Kromdraai 420 will also be upgraded.

The project will also include Grid connection infrastructure consisting of:

- A 132 kV Eskom Switching Station (up to 1 ha).
- 132 kV powerline (up to 11.5 km long) connecting the Eskom switching station to the Hermes Main Transmission Substation (a grid connection corridor of 100m wide will be assessed to allow for environmental sensitivities and/or micro-siting).

The Grid connection infrastructure, although assessed cumulatively with the BESS, will be subject to a separate environmental application process administered by the provincial authority. The grid connection infrastructure will be located on Portion 3 of the Farm Kareerand No. 444, Portion 15 of the Farm Kromdraai 443, Remainder of

Portion 5 of Farm no. 422, Portion 6 of the Farm Buffelsfontein 443, Portion 3 of the Farm Kareerand 444, Portion 2 of the Farm Buffelsfontein 443, Portion 103 of the Farm Hartebeestfontein 422, Portion 38 of the Farm Hartebeestfontein 422, Portion 79 of the Farm Hartebeestfontein 422, Portion 8 of the Farm Hartebeestfontein 422, Portion 2 of the Farm Mapaiskraal No. 441, Portion 41 of the Farm Hartebeestfontein 422 and Portion 4 of the Farm Mapaiskraal 441.

1.2 Objectives and Terms of Reference

The main objectives of the avifaunal study were to: (a) describe the avifauna associations in the study area and along the grid corridor according to species composition and richness prior to construction activities; (b) provide an inventory of bird species occurring in the study area including species prone towards collisions with the proposed infrastructure; (c) provide an impact assessment; and (d) provide an indication of the occurrence of species of concern (e.g. threatened and near threatened species; sensu IUCN, 2023; Taylor et al., 2015; Marnewick et al., 2015).

A bird assessment is required as part of the Environmental Impact Assessment process to investigate the impacts of the proposed solar facility on the avian attributes at the study site and its immediate surroundings. The avifaunal attributes at the proposed PV facility will be determined by means of a desktop analysis of GIS based information, third-party datasets and a baseline survey. It also provides the results from two independent surveys during the austral wet season and the austral dry season as per the best practice guidelines of Jenkins *et al.* (2017).

The terms of reference are to:

- conduct a baseline bird assessment based on available information pertinent to the ecological and avifaunal attributes on the project area and habitat units;
- conduct an assessment of all information on an EIA level in order to present the following results:
 - typify the regional and site-specific avifaunal macro-habitat parameters that will be affected by the proposed project;
 - provide a shortlist of bird species present as well as highlighting dominant species and compositions;
 - provide an indication on the occurrence of threatened, near threatened, endemic and conservation important bird species likely to be affected by the proposed project;
 - provide an indication of sensitive areas or bird habitat types corresponding to the study area;
 - o highlight areas of concern or "hotspot" areas;
 - identify and describe impacts that are considered pertinent to the proposed development; and
 - highlight gaps of information in terms of the avifaunal environment.

1.3 Scope of Work

The following aspects form part of the Scope of Work:

- A desktop study of bird species expected to occur (e.g. species that could potentially be present), as well as species recorded in the past (e.g. SABAP1 and SABAP2);
- A baseline survey of observed bird species according to ad hoc and point count observations during the austral wet season (summer) and during the austral dry season (winter);
- A list of bird species historically recorded within the relevant quarter degree grid in which the study site occurs (SABAP1);
- Any protected or threatened bird species recorded in the past within the relevant quarter degree grid, their scientific names and colloquial names, and protected status according to IUCN red data lists; and
- The potential of these protected or threatened species to persist within the study area.

Figure 1: A topocadastral map illustrating the geographic position of the proposed Kareerand BESS facility and grid connection corridor.

Figure 2: A satellite image illustrating spatial position of the proposed Kareerand BESS facility and grid connection corridor.

2. METHODS & APPROACH

The objectives were to obtain a basic overview of the variation and general status of the avifaunal habitat types and expected bird species likely to be affected by the proposed project.

Also take note that the current report place emphasis on the avifaunal community as a key indicator group on the proposed development area and immediate surroundings, thereby aiming to describe the preliminary conservation significance of the ecosystems in the area. Therefore, the occurrence of certain bird species and their relative abundances will determine the outcome of the ecological sensitivity of the area and the subsequent layout of the proposed solar facility infrastructure.

The information provided in this report was principally sourced from the following sources/observations:

- relevant literature see section below;
- observations made during the austral dry and wet season (30 August to 01 September 2023, 29 November - 01 December 2023 and 07 January 2024); and
- personal observations from similar habitat types in close proximity to the project area.

2.1 Literature survey and Database acquisition

A desktop and literature review of the area under investigation was commissioned to collate as much information as possible prior to the detailed baseline survey. Literature consulted primarily makes use of small-scale datasets that were collected by citizen scientists and are located at various governmental and academic institutions (e.g. Animal Demography Unit & SANBI). These include (although are not limited to) the following:

- Hockey *et al.* (2005) for general information on bird identification and life history attributes.
- Marnewick *et al.* (2015) was consulted for information regarding the biogeographic affinities of selected bird species that could be present on the study area.
- The conservation status of bird species was categorised according to the global IUCN Red List of threatened species (IUCN, 2023) and the regional conservation assessment of Taylor *et al.* (2015).
- Distributional data was sourced from the South African Bird Atlas Project (SABAP1) and verified against Harrison et al. (1997) for species corresponding to quarter-degree grid cell (QDGC) 2626DD (Stilfontein) (Figure 3). The information was then modified according to the prevalent habitat types present on the study area. The SABAP1 data provides a "snapshot" of the abundance and composition of species recorded within a quarter degree grid cell (QDGC)

which was the sampling unit chosen (corresponding to an area of approximately 15 min latitude x 15 min longitude). It should be noted that the atlas data makes use of reporting rates that were calculated from observer cards submitted by the public as well as citizen scientists. It therefore provides an indication of the thoroughness of which the QDGCs were surveyed between 1987 and 1991;

- Additional distributional data was also sourced from the SABAP2 database (http://www.sabap2.birdmap.africa). The information was then modified according to the prevalent habitat types present on the study area. Since bird distributions are dynamic (based on landscape changes such as fragmentation and climate change), SABAP2 was born (and launched in 2007) from SABAP1 with the main difference being that all sampling is done at a finer scale known as pentad grids (5 min latitude x 5 min longitude, equating to 9 pentads within a QDGC). Therefore, the data is more site-specific, recent and more comparable with observations made during the site visit (due to increased standardisation of data collection). The pentad grids relevant to the current project are 2650_2645, 2650_2650, 2655_2645 and 2655_2550 (Figure 4).
- The choice of scientific nomenclature, taxonomy and common names were recommended by the International Ornithological Committee (the IOC World Bird List v. 14.1), unless otherwise specified (see www.worldbirdnames.org as specified by Gill et al, 2024).
- The best practice guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa were also consulted (Jenkins *et al.*, 2017).
- Additional information regarding bird-power line interactions was provided by the author's own personal observations.

Figure 3: A map illustrating the quarter-degree grid cells that were investigated for this project.

Figure 4: A map illustrating the pentad grids that were investigated for this project.

2.2 Field Methods

The avifauna of the study area was surveyed during the austral dry season (August/September 2023) and the austral wet season (November/December 2023 and January 2024).

The baseline avifaunal survey was conducted by means of the following survey techniques:

2.2.1 Point Counts

Bird data was collected by means of 72 point counts (as per Buckland et al. 1993) from natural and untransformed habitat (not active agricultural land) representing two survey sessions (36 counts during the August 2023 survey and 36 counts during the November 2023 survey). Data from the point counts has been analysed to determine dominant and indicator bird species (so-called discriminant species), relative densities and to delineate the different bird associations present.

The use of point counts is advantageous since it is the preferred method to use for skulking or elusive species. In addition, it is the preferred method to line transect counts where access is problematic, or when the terrain appears to be complex (e.g. mountainous). It is considered to be a good method to use, and very efficient for

gathering a large amount of data in a short period of time (Sutherland, 2006). The spatial position of each point count is illustrated in Figure 5. The spatial placement of the point counts was determined through a stratified random design which ensures coverage of each habitat type and/or macro-habitat (Sutherland et al., 2004).

The sampling approach was adapted so that all the bird species seen within approximately 50 m from the centre of the point were recorded (resulting in an area of 0.78 ha) along with their respective abundance values (a laser rangefinder was used to delineate the area to be surveyed at each point). Each point count lasted approximately 15-20 minutes, while the area within the 50 m radius of homogenous habitat was slowly traversed to ensure that all bird species were detected and or flushed (as proposed by Watson, 2003). To ensure the independence of observations, points were positioned at least 200 m apart. Observations were not truncated, and in order to standardise data collection, the following assumptions were conformed to (according to Buckland *et al.*, 1994):

- All birds on the point must be seen and correctly identified. This assumption is
 in practice very difficult to meet in the field as some birds in the nearby vicinity
 may be overlooked due to low visibility or were obscured by vegetation (e.g.
 graminoid cover). Therefore, it is assumed that the portion of birds seen on the
 point count represents the total assemblage on the point.
- All birds must be recorded at their initial location. All movements of the birds are random and therefore natural in relation to the movements of the observer. None of the birds moved in response to the presence of the observer, and birds flying past without landing were omitted from the analysis.
- In other words, no bird is recorded more than once.

2.2.2 Field Equipment Used

The following equipment was used during the respective surveys:

- For bird identification and observation:
 - Swarovski 10x42 NL Pure binoculars; and
 - *Swarovski 25-70x90 ATX* Spotting Scope mounted on a tripod (for identification of distant objects).
- For photographing bird species of conservation concern: *Canon EOS R6* mirrorless body with *Canon RF 800mm F11 IS STM* telephoto lens.
- For measuring distance during point counts (50m radius): *Bushnell Scout 1000 ARC* Rangefinder.
- Recording of nocturnal bird vocalisations: *Wildlife Acoustics Songmeter SM4* (passive acoustic recorded).
- For navigation and capturing waypoint data: *Garmin Montana 380* and a *Garmin Montana 700i* handheld GPS.
- For capturing data to spreadsheet format: Samsung Galaxy Tab A.
- For capturing digital information on habitat features: *Canon S120* compact camera.

2.2.3 Random (ad hoc) surveys

To obtain an inventory of bird species present (apart from those observed during the point counts), all bird species observed/detected while moving between point counts were identified and noted. Particular attention was devoted to suitable roosting, foraging and nesting habitat for species of conservation concern (e.g. threatened or near threatened species). In addition, the fly patterns of large non-passerine and birds of prey were recorded, as well as the locality of collision-prone birds.

An additional 11 point sites located along the grid connection corridor was also inspected to obtain information regarding the dominant habitat types along the grid corridor and the potential for threatened or near threatened bird species to occur (Figure 5).

2.2.4 Analyses

Data generated from the point counts was analysed according to Clarke & Warwick (1994) based on the computed percentage contribution (%) of each species, including the consistency (calculated as the similarity coefficient/standard deviation) of its contribution. Hierarchical Agglomerative Clustering (a cluster analysis-based group-average linkages; Clarke & Warwick 1994) was performed on calculated Bray-Curtis coefficients derived from the data. A cluster analysis is used to assign "species associations" between samples with the aim to objectively delineate groups or assemblages. Therefore, sampling entities that group together (being more similar) are believed to have similar compositions.

The species richness and diversity of each bird association was analysed by means of richness measures (such as the total number of species recorded (S) and Shannon Wiener Index) were calculated to compare the associations with each other.

Figure 5: A map illustrating the spatial position of bird point counts located within the study area as well as the locality of a passive acoustics recorder.

2.3 Sensitivity Analysis

A sensitivity map was compiled based on the outcome of a desktop analysis.

The ecological sensitivity of any piece of land is based on its inherent ecosystem service (e.g. wetlands) and overall preservation of biodiversity.

2.3.1 Ecological Function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (e.g. wetlands) or the overall preservation of biodiversity.

2.3.2 Avifaunal Importance

Avifaunal importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

2.3.3 Sensitivity Scale

- High Sensitive ecosystems with either low inherent resistance or low resilience towards disturbance factors or highly dynamic systems considered important for the maintenance of ecosystem integrity. Most of these systems represent ecosystems with high connectivity with other important ecological systems OR with high species diversity and usually provide suitable habitat for a number of threatened or rare species. These areas should preferably be protected;
- Medium These are slightly modified systems which occur along gradients of disturbances of low-medium intensity with some degree of connectivity with other ecological systems OR ecosystems with intermediate levels of species diversity but may include potential ephemeral habitat for threatened species; and
- Low Degraded and highly disturbed/transformed systems with little ecological function and are generally very poor in species diversity (most species are usually exotic or weeds).

2.4 Limitations

- It is assumed that third party information (obtained from government, academic/research institution, non-governmental organisations) is accurate and true.
- Some of the datasets are out of date and therefore extant distribution ranges may have shifted although these datasets provide insight into historical distribution ranges of relevant species.
- The datasets are mainly small-scale and could not always consider azonal habitat types that may be present on the study area (e.g. artificial livestock watering points). In addition, these datasets encompass surface areas larger than the study area, which could include habitat types and species that are not present on the study site. Therefore the potential to overestimate species richness is highly likely while it is also possible that certain cryptic or specialist species could have been be overlooked in the past.
- Some of the datasets (e.g. SABAP2) managed by the Animal Demography Unit of the University of Cape Town were recently initiated and therefore incomplete.
- This company, the consultants and/or specialist investigators do not accept any responsibility for conclusions, suggestions, limitations and recommendations made in good faith, based on the information presented to them, obtained from the surveys or requests made to them at the time of this report.

3. DESCRIPTION OF THE AFFECTED ENVIRONMENT

3.1 Locality

The proposed BESS facility will be located approximately 22 km east of the town of Klerksdorp and will be located on Portion 3 of the Farm Kareerand No. 444 in the North West Province (Figure 1). The site coordinates of the centre of the proposed facility are S26° 54' 37.6" E26° 52' 48.3".

3.2 Regional Vegetation Description

The proposed BESS facility and grid connection corridor correspond to the Grassland Biome and more particularly to the Dry and Mesic Highveld Grassland Bioregion as defined by Mucina & Rutherford (2006). It comprehends two ecological types known as Vaal Reefs Dolomite Sinkhole Woodland (Mucina & Rutherford, 2006) and Rand Highveld Grassland (Figure 6).

From an avifaunal perspective it is evident that bird diversity is positively correlated with vegetation structure, and floristic richness is not often regarded to be a significant contributor of patterns in bird abundance and their spatial distributions. Although grasslands are generally poor in woody plant species, and subsequently support lower bird richness values, it is often considered as an important habitat for many terrestrial bird species such as larks, pipits, korhaans, cisticolas, widowbirds including large terrestrial birds such as Secretarybirds, cranes and storks. Many of these species are also endemic to South Africa and display particularly narrow distribution ranges. Due to the restricted spatial occurrence of the Grassland Biome and severe habitat transformation, many of the bird species that are restricted to the grasslands are also threatened or experiencing declining population sizes.

Vaal Reefs Dolomite Sinkhole Woodland is confined to a small area associated with dolomite sinkholes in the Stilfontein and Orkney areas corresponding to the North West and Free State Provinces. It is located on the western part of the study site and more particularly to the proposed grid connection. It occurs on slightly undulating landscapes dissected by prominent chert ridges, thereby supporting a grassland-woodland floristic mosaic. A prominent floristic structure of this vegetation type is woodland formations in the form of bush clumps around sinkholes and dolomite outcrops.

The Vaal Reefs Dolomite Sinkhole Woodland is a threatened (Vulnerable) ecosystem with only a small patch in the statutorily conservation area of the Sterkfontein Caves (part of the Cradle of Humankind World Heritage Site. Approximately 25% of this vegetation type has been transformed due to mining activities and cultivation, and it corresponds to an area with the highest concentration of mines when compared to other vegetation types.

The Highveld Alluvial Vegetation is confined to the Free State, North West, Mpumalanga and Gauteng Provinces, where it is located along major alluvial drainage systems and floodplains that are embedded in the Grassland Biome, and herewith associated with the middle Vaal River and its tributaries. It occurs on a relatively flat topography supporting riparian thickets dominated by *Vachellia karroo* and seasonally flooded grassland. Noteworthy plant species include *V. karroo, Salix mucronata, Ziziphus mucronata, Gymnosporia buxifolia, Cynodon dactylon* and *Asparagus laricinus*.

The Alluvial Highveld Vegetation is a Least Concern ecosystem with approximately 10 % conserved in the Barberspan, Bloemhof Dam, Schoonspruit, Faan Meintjies, Wolwespruit and Soetdoring Nature Reserves. In addition, more than 25 % of this vegetation type has been transformed by cultivation and the construction of dams. It is also, due to its high nutrient content, prone towards invasion by alien plant species such as *Melia azedarach, Morus alba* and *Populus x canescens*.

Figure 6: A satellite image illustrating the regional vegetation type corresponding to the development area and immediate surroundings. Vegetation type categories were defined by Mucina & Rutherford (2006; updated 2012).

3.3 Land cover, land use and existing infrastructure.

According to the South African National dataset of 2018-2020 (Geoterrainimage, 2020) the study area comprehends the following land cover categories (Figure 7):

Natural areas:

- Natural Grassland;
- Open woodland and
- Herbaceous wetlands

Transformed areas:

- Mine infrastructure and build-up land; and
- Cultivation and pastures.

From the land cover dataset it is evident that the proposed facility and most of the grid corridor are predominantly occupied by natural grassland, while part of the grid connection is also occupied by open woodland (mainly Vachellia tree species) and herbaceous wetlands. The latter include the Koekemoerspruit and a wetland system near the facility which include effluent emanating from the nearby slimes dam. Most of the surrounding land use include gold mining activities and livestock grazing.

Figure 7: A map illustrating the land cover classes (Geoterrainimage, 2020) corresponding to the proposed study area.

3.4 Conservation Areas, Protected Areas and Important Bird Areas

The proposed facility coincides with the Bushybend Private Nature Reserve, while the Mispah Game Farm is located approximately 11 km south-west of the study area (see Figure 8). The project area is not located in close proximity to any Important bird area.

Figure 8: A map illustrating the spatial locality of nearby conservation areas to the study area.

3.5 Annotations on the National Web-Based Environmental Screening Tool

Regulation 16(1)(v) of the Environmental Impact Assessment Regulations, 20145 (EIA Regulations) provides that an applicant for Environmental Authorisation is required to submit a report generated by the Screening Tool as part of its application. On 5 July 2019, the Minister of Environmental Affairs, Forestry and Fisheries published a notice in the Government Gazette giving notice that the use of the Screening Tool is compulsory for all applicants to submit a report generated by the Screening Tool from 90 days of the date of publication of that notice.

The Screening Tool is intended to allow for pre-screening of sensitivities in the landscape to be assessed within the EA process. This assists with implementing the mitigation hierarchy by allowing developers to adjust their proposed development footprint to avoid sensitive areas. The Screening Tool report will indicate the

(preliminary) environmental sensitivities that intersect with the proposed development footprint as defined by the applicant as well as the relevant Protocols.

As the Screening Tool contains datasets that are mapped at a national scale, there may be areas where the Screening Tool erroneously assigns, or misses, environmental sensitivities because of mapping resolution and a high paucity of available and accurate data. Broad-scale site investigations will provide for an augmented and site-specific evaluation of the accuracy and 'infilling' of obvious and large-scale inaccuracies. Information extracted from the National Web-based Environmental Screening Tool (Department of Environmental Affairs, 2020), indicated that the development area and grid connection hold a **medium to low** sensitivity with respect to the relative animal species protocol (Figure 9) (report generated 10/01/2024):

Figure 9: The animal species sensitivity of the proposed BESS facility and grid corridor according to the Screening Tool.

Sensitivity	Feature(s)
High	Aves – Circus ranivorus
Medium	Aves – Circus ranivorus
Low	Subject to confirmation

Sensitive features include the following:

Part of the overhead grid connection corridor traverses across habitat with a medium to high probability for the occurrence of the regionally endangered African Marsh Harrier (*Circus ranivorus*). Habitat with a high sensitivity according the Screening Tool was mainly confined to the Koekemoerspruit.

It is evident that the BESS facility and grid connection correspond to a **low** avian theme sensitivity (see Figure 10).

Figure 10: The relative avian sensitivity of the development area and immediate surroundings according to the Screening Tool.

4. RESULTS AND DISCUSSION

4.1 Avifaunal habitat types

Apart from the regional vegetation types, the local composition and distribution of the vegetation associations on the facility and grid connection are a consequence of a combination of factors simulated by grazing intensity, past disturbance regimes (past land use practice), soil texture and hydrological regimes which have culminated in a number of habitat types that deserve further discussion (Figures 11 - 15):

1. Open savannoid grassland with bush clump mosaics: This unit is dominant on the western section of the proposed grid connection corridor. It is represented by two discrete floristic variations which also provide habitat for two discrete avifaunal associations. The first floristic variation is predominantly represented by both untransformed and grazed grassland, depending on grazing intensity, and dominated by "late-successional" graminoids such a *Themeda triandra*, *Cymbopogon caesius, C. pospischilii, Trachypogon spicatus, Schizachyrium sanguineum* and *Diheteropogon amplectens*. It is occupied by a typical grassland bird composition dominated by insectivorous and granivore passerine bird species such as Desert Cisticola (*Cisticola aridulus*), Cloud Cisticola (*C. textrix*), Rufous-naped Lark (*Mirafra africana*), Eastern Clapper Lark (*Mirafra fasciolata*) and Red-billed Quelea (*Quelea quelea*). When the grass is burned, large numbers of Capped Wheatear (*Oenanthe pileata*) occur. Prominent non-passerine species include Orange River Francolin (*Scleroptila gutturalis*), Swainson's Spurfowl (*Pternistis swainsonii*), Northern Black Korhaan (*Afrotis afraoides*), Crowned Lapwing (*Vanellus coronatus*) and Helmeted Guineafowl (*Numida meleagris*).

The bush clumps form a prominent mosaic characterised by the dominance of a woody layer of *Searsia lancea*, *Celtis africana*, *Asparagus laricinus*, *Vachellia erioloba* and *V. karoo* forms canopy constituents in some areas. The eminent increase in vertical heterogeneity provided by the woody layer is colonised by a "Bushveld" bird association consisting of insectivorous and frugivore passerines such as Black-chested Prinia (*Prinia flavicans*), Chestnut-vented Warbler (*Curruca subcoerulea*), African Red-eyed Bulbul (*Pycnonotus nigricans*), Kalahari Scrub-robin (*Cercotrichas paena*) as well as granivores such as Southern Masked Weaver (*Ploceus velatus*). Non-passerine bird taxa are represented by Ring-necked Dove (*Streptopelia capicola*), Acacia Pied Barbet (*Tricholaema leucomelas*) and Red-faced Mousebird (*Urocolius indicus*).

- 2. Rocky grassland with bush clump mosaics: This unit is dominant on the eastern section of the proposed grid connection corridor as well as the proposed BESS facility and consists of a floristic composition that is reminiscent of Rand Highveld Grassland. It is characterised by the occurrence of many shallow ridges and outcrops located within a graminoid matrix. It provides habitat for a bird composition that is similar to that of the open savannoid grassland which include cryptic Highveld bird species such as Desert Cisticola (*Cisticola aridulus*), Cloud Cisticola (*C. textrix*), Rufous-naped Lark (*Mirafra africana*), Eastern Clapper Lark (*Mirafra fasciolata*) and pipit taxa (in particular Nicholson's Pipit Anthus nicholsonii). It also provides foraging habitat for larger terrestrial bird species such as the Northern Black Korhaan (*Afrotis afroides*).
- 3. Dense microphyllous bushveld: This unit is confined to dense Vachellia karoo dominated bushveld and located immediately to the west of the proposed BESS facility. The high vertical heterogeneity of the tree layer is colonised by a bird composition that is essentially similar to the bush clump habitat, although the dense cover abundance allows for shy and skulking species to occur such as Cape Robin-chat (*Cossypha caffra*), White-throated Robin-chat (*C. humeralis*) and granivore taxa such as Green-winged Pytilia (*Pytilia melba*) and Violet-eared Waxbill (*Granatina granatina*). Other noteworthy bird species include Willow Warbler (*Phylloscopus trochilus*), Spotted Flycatcher

(*Muscicapa striata*), Fiscal Flycatcher (*Malaenornis silens*), Fairy Flycatcher (*Stenostira scita*) and Cardinal Woodpecker (*Dendropicos fuscescens*).

- 4. Vachellia erioloba bushveld: This unit is confined to fragmented patches of Vachellia erioloba dominated bushveld oon the central section of the proposed grid connection corridor. Although supporting many grassland and bushveld bid species with high similarities to the previous units, the open graminoid structure and flat-topped appearance of many of the *V. erioloba* trees will render this unit as suitable breeding habitat for Secretarybirds (*Sagittarius serpentarius*).
- 5. Secondary/regenerating grassland: This unit is confined to old agricultural lands which are left fallow. The floristic composition is dominated by many secondary grasses and weed species, which is subsequently colonised by generalist bird species (mainly granivores) and grassland insectivores (e.g. Desert Cisticola *C. aridulus*).
- 6. Wetlands and floodplains: Koekemoerspruit: This unit is represented by a channelled valley-bottom wetland and associated floodplain of the Koekemoerspruit (a tributary of the Vaal River) which is located on the western section of the proposed grid connection corridor. It is earmarked by a welldefined meandering channel and floodplain that is located on clay soils with dense stands of Phragmites australis and Typha capensis reedbeds. It provides important foraging, roosting and potentially also breeding habitat for waterfowl and a variety of waterbird taxa such as Yellow-billed Duck (Anas undulata), Red-billed Teal (A. erythrorhyncha), Egyptian Goose (Alopochen aegyptiacus), South African Shelduck (Tadorna cana), Reed Cormorant (Microcarbo africanus), Glossy Ibis (Plegadis falcinellus) and Hamerkop (Scopus umbretta). The moist and/or inundated grassland of the associated floodplain is colonised by facultative grassland species such as Levaillant's Cisticola (Cisticola tinniens), African Stonechat (Saxicola torquatus) and Southern Red Bishop (Euplectes orix). Certain parts of the system tend to retain surface water for extended periods of time during the austral dry season which tend to provide foraging habitat for waterbirds over long periods of time.
- 7. *Wetlands and floodplains: Slimes dam seep:* This unit is represented by effluent seeping from a nearby slimes dam. It is represented by a shallow seep dominated by *Typha capensis*, although during the respective site visits the floristic structure was heavily trampled by livestock. It was poorly represented by bird species.
- 6. Transformed areas (roads and build-up land): These areas are represented by roads and build-up land. These features are invariably artificial with a bird composition that is often of low richness and composed of generalist taxa.

Figure 11: A habitat map illustrating the avifaunal habitat types on the project area (BESS facility and grid corridor).

Figure 12: A habitat map illustrating the avifaunal habitat types along the proposed grid connection corridor – western area.

Figure 13: A habitat map illustrating the avifaunal habitat types along the proposed grid connection corridor – central area.

Figure 14: A habitat map illustrating the avifaunal habitat types at the proposed BESS facility and immediate surroundings.

Figure 15: A collage of images illustrating examples of avifaunal habitat types observed on the proposed study area: (a - d) open savannoid grassland with bush clump mosaics, (e - h) rocky grassland with bush clump mosaics, (i - l) dense microphyllous bushveld dominated by *Vachellia karoo*, (m - n) *Vachellia erioloba* bushveld, (o – p) secondary/regenerating grassland (mainly confined to old agricultural land), (q – t) wetlands and floodplains confined to the Koekemoerspruit and (u - x) wetlands and floodplains confined to a seep emanating from a slimes dam.

4.2 Species Richness and Predicted summary statistics

The study area is known to support approximately ~286 bird species (Appendix 1 & Table 1). However, it is more likely that between 200 - 220 bird species could occur on the study area and immediate surroundings (according to the habitat types and the ecological condition thereof). The expected richness was inferred from the South (SABAP2)¹ African Bird Atlas Project (Harrison et al., 1997; www.sabap2.birdmap.africa) and the presence of suitable habitat on the development area. This equates to 28 % of the approximate 994² species listed for the southern African subregion³ (and approximately 33 % of the 871 species recorded within South Africa⁴). However, the average species richness obtained from the pentad grids

¹ The expected richness statistic was derived from pentad grids 2650_2645, 2650_2650, 2655_2645 and 2655_2550 totalling 308 bird species (based on 520 full protocol cards).

² sensu www.zestforbirds.co.za (Hardaker, 2022), including recently confirmed bird species (vagrants).

³ A geographical area south of the Cunene and Zambezi Rivers (includes Namibia, Botswana, Zimbabwe, southern Mozambique, South Africa, eSwatini and Lesotho).

⁴ With reference to South Africa (including Lesotho and eSwatini (BirdLife South Africa, 2022).
corresponding to the study area (c. for pentad grids 2650_2645, 2650_2650, 2655_2645 and 2655_2550) is 61.5 species for each full protocol card submitted (for observation of two hours or more; range= 13-132 species).

According to Table 1, the study area is poorly represented by biome-restricted⁵ (see Table 2), local endemic species and local near-endemic bird species. It supports *ca*. 33 % of the near-endemic species present in the subregion. In addition, although the wider study area (outside the ambit of the BESS facility) supports a large diversity of waterbird species (due to the nearby Vaal River), the poor representation of aquatic-associated habitat within the physical boundaries of the BESS facility resulted in a poor richness of waterbird species (mainly represented by large waterfowl such as Egyptian Goose *Alopochen aegyptiaca* and South African Shelduck *Tadorna cana*).

Approximately 12 threatened or near threatened bird species are known to be present in the wider study area, of which two species (c. Lanner Falcon *Falco biarmicus* and Caspian Tern *Hydroprogne caspia*) were observed, although not within the physical boundaries of the BESS facility and the grid corridor. Furthermore, 13 southern African endemics and 16 near-endemic species were confirmed on the study area and the immediate surroundings (Table 3).

According to Table 3 it is evident that 60.78% of species of conservation concern (including endemics) were observed within the study area, of which the 33.33% are prone to collide with overhead powerlines, and 74.51% could become displaced by the infrastructure during construction activities (if the footprint coincides with suitable habitat).

Table 1: A summary table of the total number of species, Red listed species (according to Taylor *et al.*, 2015 and the IUCN, 2023), endemics and biome-restricted species (Marnewick *et al.*, 2015) expected (*sensu* SABAP1 and SABAP2) to occur in the study area and immediate surroundings.

Description	Expected Richness Value (study area and surroundings) ***	Observed Richness Value (study area) ****
Total number of species*	286 (33%)	210 (73 %)
Number of Red Listed species**	12 (9%)	1 (78 %)
Number of biome-restricted species – Zambezian and Kalahari-Highveld Biomes*	4 (22 %)	4 (100 %)
Number of local endemics (BirdLife SA, 2022)*	2 (5 %)	2 (100 %)
Number of local near-endemics (BirdLife SA, 2022)*	6 (20%)	5 (83 %)

⁵ A species with a breeding distribution confined to one biome. Many biome-restricted species are also endemic to southern Africa.

Description	Expected Richness Value (study area and surroundings) ***	Observed Richness Value (study area) ****
Number of regional endemics (Hockey <i>et al.</i> , 2005)**	17 (16 %)	13 (76 %)
Number of regional near-endemics (Hockey et al., 2005)**	23 (38 %)	16 (70 %)

* only species in the geographic boundaries of South Africa (including Lesotho and eSwatini) were considered.

** only species in the geographic boundaries of southern Africa (including Namibia, Botswana, Zimbabwe and Mozambique south of the Zambezi River) were considered

*** Percentage values in brackets refer to totals compared against the South African avifauna (sensu BirdLife SA, 2022a).

**** Percentage values in brackets refer to totals compared against the expected number of species in the project area.

Includes taxa recorded from pentad grids adjacent to 2655_2645.

Table 2: Expected biome-restricted species (Marnewick *et al*, 2015) likely to occur on the study area and immediate surroundings.

Species	Kalahari-	Zambezian	Expected
	Highveld		Frequency of
			occurrence
Kalahari Scrub-robin (Cercotrichas paena)	Х		Common
Barred Wren-warbler (Calamonastes fasciolatus)	Х		Fairly Common
			in tall Vachellia
			karroo bushveld
White-throated Robin-chat (Cossypha humeralis)		Х	Fairly common
White-bellied Sunbird (Cinnyris talatala)		Х	Common

Table 3: Bird species of conservation concern occurring in the broader study area which could collide and/ or become displaced by the proposed PV and grid infrastructure.

Common Name	Scientific name	Regional Status	Global Status	Observed	Collision with power lines	Collision with PV panels	Displacement (disturbance & loss of habitat)
Cape Vulture	Gyps coprotheres	EN, End	VU		1		
White-backed Vulture	Gyps africanus	CR	CR		1		
Caspian Tern	Hydroprogne caspia	VU		1	1	1	
Martial Eagle	Polemaetus bellicosus	EN	EN		1		
Secretarybird	Sagittarius serpentarius	EN	EN		1		
South African Shelduck	Tadorna cana	End			1	1	
Cape Shoveler	Anas smithii	End			1	1	
Northern Black Korhaan	Afrotis afraoides	End		1	1		1
White-backed Mousebird	Colius colius	End		1			1
Karoo Thrush	Turdus smithi	End		1			1

Common Name	Scientific name	Regional Status	Global Status	Observed	Collision with power lines	Collision with PV panels	Displacement (disturbance & loss of habitat)
White-throated Robin-chat	Cossypha humeralis	End		1			1
Ant-eating Chat	Myrmecocichla formicivora	End		1			1
Fairy Flycatcher	Stenostira scita	End		1			1
Fiscal Flycatcher	Melaenornis silens	End		1			1
Melodious Lark	Mirafra cheniana	End		1			1
Cape Longclaw	Macronyx capensis	End		1			1
Pied Starling	Lamprotornis bicolor	End		1			1
Cape White-eye	Zosterops virens	End		1			1
Orange River White- eye	Zosterops pallidus	End		1			1
South African Cliff Swallow	Petrochelidon spilodera	End		1			1
Cape Weaver	Ploceus capensis	End					1
Orange River Francolin	Scleroptila gutturalis	N-end		1	1		1
Pale-chanting Goshawk	Melierax canorus	N-end		1	1		
Natal Spurfowl	Pternistis natalensis	N-end		1			1
Acacia Pied Barbet	Tricholaema leucomelas	N-end		1			1
Cape Penduline Tit	Anthoscopus minutus	N-end					1
Eastern Clapper Lark	Mirafra fasciolata	N-end		1			1
Cloud Cisticola	Cisticola textrix	N-end		1			1
Ashy Tit	Parus cinerascens	N-end		1			1
African Red-eyed Bulbul	Pycnonotus nigricans	N-end		1			1
Kalahari Scrub Robin	Cercotrichas paena	N-end		1			1
Pririt Batis	Batis pririt	N-end					1
Chestnut-vented Warbler	Curruca subcoerulea	N-end		1			1
Crimson-breasted Shrike	Laniarius atrococcineus	N-end		1			1
Barred Wren-warbler	Calamonastes fasciolatus	N-end		1			1
Mountain Wheatear	Oenanthe	N-end					1
Bokmakierie	Telophorus	N-end		1			1
Marico Flycatcher	Bradornis mariquensis	N-end					1
Cape Sparrow	Passer melanurus	N-end		1			1

Common Name	Scientific name	Regional Status	Global Status	Observed	Collision with power lines	Collision with PV panels	Displacement (disturbance & loss of habitat)
Scaly-feathered Weaver	Sporopipes squamifrons	N-end		1			1
Pink-billed Lark	Spizocorys conirostris	N-end					1
Red-headed Finch	Amadina erythrocephala	N-end					1
Shaft-tailed Whydah	Vidua regia	N-end					1
Yellow Canary	Crithagra flaviventris	N-end		1			1
Black-winged Pratincole	Glareola nordmanni	NT	NT		1		
African Marsh Harrier	Circus ranivorus	EN			1		1
African Grass-owl	Tyto capensis	VU			1		1
Abdim's Stork	Ciconia abdimii	NT			1		
Greater Flamingo	Phoenicopterus roseus	NT			1	1	
Lanner Falcon	Falco biarmicus	VU		1	1		
Yellow-billed Stork	Mycteria ibis	EN			1		
	Totals:	51	5	31	17	4	38

Threatened and near threatened species are indicated in red

CR - Critically endangered, EN - endangered, VU - vulnerable, NT - near threatened.

End - southern African endemic

N-end - southern African near-endemic

4.3 Bird species of conservation concern

Table 4 provides an overview of bird species of conservation concern that could occur on the development area and immediate surroundings based on their historical distribution ranges and the presence of suitable habitat. According to Table 4, a total of 12 species have been observed in the wider study area, which include four globally threatened species, five regionally threatened species, one globally near threatened species and two regionally near threatened species.

It is evident from Table 4 that most of the expected threatened and near threatened bird species have low reporting rates (<1%), implying that most of these species are irregular visitors to the study area. Due to the absence of suitable habitat on the study area, many of the threatened and near-threatened species that were recorded from the wider study area are also unlikely to be present within the physical boundaries of the development area (e.g. Greater Flamingo *Phoenicopterus roseus* and the Caspian Tern *Hydroprogne caspia*).

However, the regionally vulnerable Lanner Falcon (*Falco biarmicus*) is the only species with a high probability to be present as regular foraging visitors. A single adult bird was observed hunting approximately 2.3km southeast of the proposed BESS facility.

In addition, the Caspian Tern (*Hydroprogne caspia*) is regarded as a regular passage visitor along the nearby Vaal River located approximately 1.4km southwest of the

proposed BESS facility. It utilises the Vaal River during dispersal between breeding and roosting sites (Vaal Dam and Bloemhof Dam). In addition, the wetland and floodplain habitat along the Koekemoerspruit were the only suitable foraging and potential breeding habitat for endangered African Marsh-harrier (*Circus ranivorus*). According to SABAP2 data, it is only known from a single observation in the study area, which suggest that this species is uncommon to rare in the study area.

The proposed BESS facility and grid corridor, especially the open grassland habitat along the eastern section of the grid corridor and the *Vachellia erioloba* bushveld provided potential foraging and even breeding habitat for the endangered Secretarybird (*Sagittarius serpentarius*). However, Secretarybirds have not been recently observed in the study area (*sensu* SABAP2 and personal observations), suggesting that this species could be an irregular visitor to the area, or may have been displaced due to mining and livestock grazing activities in the area. It is possible that the low reporting rates for Secretarybirds reflect the poor coverage of certain parts of the study area (e.g. the eastern section of the proposed grid corridor) by citizen scientists (e.g. birdwatchers), and this species could occur in higher numbers due to being overlooked.

Table 4: Bird species of conservation concern that could utilise the study site based on their historical distribution range and the presence of suitable habitat. Red list categories according to the IUCN (2023)* and Taylor et al. (2015)**.

Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP2	Preferred Habitat	Potential Likelihood of Occurrence
Ciconia abdimii (Abdim's Stork)	-	Near threatened	0.58 (three observations)	Open stunted grassland, fallow land and agricultural fields.	An uncommon summer foraging visitor to areas consisting of open grassland or arable land.
<i>Circus ranivorus</i> (African Marsh Harrier)	-	Endangered	0.19 (one observation)	Restricted to permanent wetlands with extensive reedbeds.	The extensive reedbeds along the Koekemoerspruit provide suitable habitat for this species to occur. It is unlikely to be present on any of the other habitat types (apart from the Koekemoerspruit). Only known from a single observation, during 2017. (sensu SABAP2).

Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP2	Preferred Habitat	Potential Likelihood of Occurrence
Falco biarmicus (Lanner Falcon)	-	Vulnerable	4.83 (23 observations)	Varied, but prefers to breed in mountainous areas.	A regular foraging visitor to the study area. An adult bird was observed hunting approximately 2.3km southeast of the proposed BESS facility.
Glareola nordmanni (Black-winged Pratincole)	Near threatened	Near threatened	0.58 (three observations)	Varied, but forages over open short grassland, pastures and agricultural lands (especially when being tilled).	An irregular foraging visitor to the study area.
Gyps coprotheres (Cape Vulture)	Endangered	Endangered	0.58 (three observations)	Mainly confined to mountain ranges, especially near breeding sites. Ventures far afield in search of food.	An irregular foraging/scavenging visitor to the study area pending the presence of food (e.g. livestock/game carcasses).
Hydroprogne caspia (Caspian Tern)	-	Vulnerable	4.44 (23 observations)	Large impoundments and large perennial rivers, and large pans, also estuaries.	Unlikely to occur on BESS facility and grid connection owing to an absence of suitable habitat. A regular passage visitor along the nearby Vaal River (pers. obs.) . This species has a high reporting rate for the wider study area, which is owing to birds observed dispersing along the Vaal River (a major flyway for this species between Bloemhof Dam and the Vaal Dam; it regularly breeds at these sites). It is

Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP2	Preferred Habitat	Potential Likelihood of Occurrence
					unlikely to occur on the development area.
Phoenicopterus roseus (Greater Flamingo)	-	Near threatened	0.77 (four observations)	Restricted to large saline pans and other inland water bodies.	Unlikely to occur on the BESS facility and grid corridor owing to an absence of suitable habitat.
<i>Gyps africanus</i> (White-backed Vulture)	Critically Endangered	Critically Endangered	0.58 (three observations)	Breed on tall, flat-topped trees. Mainly restricted to large rural or game farming areas.	An irregular foraging/scavenging visitor to the study area pending the presence of food (e.g. livestock/game carcasses).
Polemaetus bellicosus (Martial Eagle)	Endangered	Endangered	0.19 (single observation)	Varied, from open karroid shrub to lowland savanna.	A highly irregular foraging visitor. It has not been observed on the study area since 2010.
<i>Mycteria ibis</i> (Yellow-billed Stork)	-	Endangered	0.77 (known from four records)	Wetlands, pans and flooded grassland.	Probably an irregular foraging visitor to the Koekemoerspruit
Sagittarius serpentarius (Secretarybird)	Endangered	Endangered	0.19 (single observation)	Prefers open grassland or lightly wooded habitat.	Probably an irregular foraging visitor to the study area even though optimal foraging and breeding habitat occurs. It was last observed during 2016 on the
<i>Tyto capensis</i> (African Grass- owl)	-	Vulnerable	0.19 (single observation)	Prefers open grassland for foraging and dense rank and moist grassland for roosting and breeding adjacent to vleis and marshland (especially	study area. Probably uncommon on the study area although it could be present along the floodplain habitat along the Koekemoerspruit.

Species	Global Conservation Status*	National Conservation Status**	Mean Reporting rate: SABAP2	Preferred Habitat	Potential Likelihood of Occurrence
				rank Imperata cylindrica).	

4.4 Species accumulation curve

Prior to further analyses where species richness values are considered, it is imperative to determine if all bird species present were sufficiently sampled. Species accumulation curves (SAC) provide a means to examine data and sampling efficacy. For this project the species accumulation curves (SAC) for the point count data were generated using the software program Estimates S (version 9) with 100 randomizations (as recommended in Colwell, 2013). Curves were generated for the full data set (all point counts). Sampling sufficiency was determined by establishing whether a point had been reached where a line representing one new sample adding one new species was tangent to the curve (Brewer & McCann, 1982). The Michaelis-Menten equation (Soberôn & Llorente 1993) was fitted to the predicted number of species using Estimates S (Raaijmakers, 1987). A satisfactory level of sampling was achieved if between 80-90 % of the bird species were detected, and hence predicted by the model (Moreno & Halffter, 2000).

The species accumulation curve (SAC) reached an asymptote at approximately 24 point counts (Figure 16). The sampling captured approximately 73.84% of the number of species predicted by the Michaelis-Menten model at 24 point counts. Approximately 88.77% of the expected species was captured by 72 counts. Sampling effort was considered sufficient and recorded most of the species present on the study area and immediate surroundings during the respective survey sessions.

Figure 16: The species accumulation curve (SAC) (red line) for bird points sampled during the survey sessions. The blue line represents an accumulation of one species for every additional point count. The black line is parallel to the blue one and is tangent to the SAC approximately after 24 counts (as represented by the vertical red stippled line). The green stippled line represents the Michaelis-Menten curve.

4.5 Bird Assemblage Structure and Composition

4.5.1 Summary of point counts

A total of 91 bird species and an average abundance of 879.5 individuals were recorded from the bird point counts (representing surveys conducted during the dry and wet season) located on the BESS facility and surroundings. A mean of 13.25 species and 24.4 individuals were recorded per point count. The highest number of species and individuals recorded from a point count was respectively 30 species (and 85 individuals (from tall riparian woodland located along the edge of the nearby Vaal River). The lowest number of species and individuals was respectively one species and a single individual (from rocky grassland in close proximity to the BESS facility). The mean number of species corresponding to the proposed BESS facility is 8.6 species (range=5 - 19 species) and with an average of 13.6 individuals (range= 6-31.5 individuals) per point count. The mean frequency of occurrence of a bird species in the study area was 14.56 % and the median was 8.33 %, while the most common value (mode) was 2.78 %. The latter represents those species that were encountered in only one point count. Six bird species occurred in 50 % or more of the counts (Table 5), of which the Black-chested Prinia (Prinia flavicans) occurred in >80% of all the counts (Table 5).

Table 5: Bird species with a frequency of occurrence greater than 50 % observed on the study site and immediate surroundings.

Species	Frequency (%)	Species	Frequency (%)
Black-chested Prinia (Prinia flavicans)	80.56	Southern Masked Weaver (Ploceus velatus)	66.67
African Red-eyed Bulbul (<i>Pycnonotus nigricans</i>)	77.78	Neddicky (Cisticola fulvicapilla)	50.00
Chestnut-vented Warbler (Curruca subcoerulea)	69.44	Willow Warbler (Phylloscopus trochilus)	50.00

4.5.2 Dominance and typical bird species

The "typical" species (species with a high frequency of occurrence) on the study area are presented in Table 6. Only those species that cumulatively contributed to more than 90% to the overall similarity between the point counts are presented.

The three most typical bird species on the study area include the Black-chested Prinia (*Prinia flavicans*), African Red-eyed Bulbul (Pycnonotus nigricans) and Chestnutvented Warbler (*Curruca subcoerulea*). These species are considered widespread species in the broader study area and occur in most of the habitat types that area present. It is also evident from Table 6 that the typical bird assemblage is primarily represented by insectivores (insect-eating) and by small-bodied granivores (seedeating taxa. It includes both species that with high affinities for grassland habitat (e.g. Desert Cisticola *Cisticola aridulus*) and dense microphyllous bushveld (e.g. Greenwinged Pytilia *Pytilia melba* and Cape Robin-chat *Cossypha caffra*).

Species	Av. Abundanc e	Consistency (Sim/SD)	Contributio n (%)	Primary Trophic Guild
Black-chested Prinia (<i>Prinia</i> flavicans)	1.65	1.05	18.03	Insectivore: upper canopy foliage gleaner
African Red-eyed Bulbul (Pycnonotus nigricans)	1.43	1.06	14.98	Frugivore and Insectivore: upper canopy gleaner
Chestnut-vented Warbler (Curruca subcoerulea)	1.51	0.84	13.00	Insectivore: upper canopy foliage gleaner
Southern Masked Weaver (Ploceus velatus)	1.61	0.82	10.04	Granivore: lower canopy to ground gleaner
Desert Cisticola (Cisticola aridulus)	0.33	0.29	5.84	Insectivore: upper canopy foliage gleaner
Neddicky (Cisticola fulvicapilla)	0.58	0.53	5.42	Insectivore: upper canopy foliage gleaner
Willow Warbler (Phylloscopus trochilus)	0.64	0.55	4.31	Insectivore: upper canopy foliage gleaner
Brown-crowned Tchagra (Tchagra australis)	0.64	0.40	2.78	Insectivore: upper canopy foliage gleaner
Green-winged Pytilia (<i>Pytilia</i> <i>melba</i>)	0.72	0.34	2.19	Granivore: lower canopy to ground gleaner

Table 6: Bird species with a high frequency of occurrence ("typical bird species") on the study area.

Species	Av. Abundanc e	Consistency (Sim/SD)	Contributio n (%)	Primary Trophic Guild
Cape Robin-chat (Cossypha caffra)	0.57	0.34	1.93	Insectivore: lower canopy foliage gleaner

4.5.3 Composition and diversity

Multidimensional scaling and hierarchical agglomerative clustering ordination of bird abundance values obtained from the point counts on the project area differentiate between four discrete bird associations (Global R= 0.269, p=0.006; Figure 17), with statistically strong differences between canopy height, bush clump habitat and grassland habitat due to differences in floristic vertical heterogeneity (e.g. tree/shrub height). The typical bird association on the study area include four bird associations: (1) an association pertaining to floodplain habitat and riparian woodland (mainly confined to the Koekemoerspruit and nearby Vaal River), (2) an association confined to microphyllous (*Vachellia*) bushveld, (3) an association confined to rocky grassland with bush clump mosaics and (4) an association confined to open savannoid grassland with bush clump mosaics.

Figure 17: A two-dimensional non-metric multidimensional scaling ordination (stress=0.14) of the relative abundances of bird species based on Bray-Curtis similarities obtained from point counts on the project area. It differentiates between four bird associations: (1) an association pertaining to floodplain habitat and riparian woodland (mainly confined to the Koekemoerspruit and nearby Vaal River), (2) an association confined to microphyllous (*Vachellia*) bushveld, (3) an association confined to open savannoid grassland with bush clump mosaics and (4) an association confined to open savannoid grassland with bush clump mosaics.

The following bird associations are relevant to the study area and immediate surroundings:

1. Association on floodplain and riparian woodland

This association is confined to the floodplain of the Koekemoerspruit and the tall riparian woodland located along the shore of the nearby Vaal River.

Dominant species: Black-chested Prinia (*Prinia flavicans*), African Red-eyed Bulbul (*Pycnonotus nigricans*), Orange River White-eye (*Zosterops pallidus*), Natal Spurfowl (*Pternistis natalensis*), Bar-throated Apalis (*Apalis thoracica*), Karoo Thrush (*Turdus smithii*), African Darter (*Anhinga rufa*), Reed Cormorant (*Microcarbo africanus*), Southern Red Bishop (*Euplectes orix*), Egyptian Goose (*Alopochen aegyptiacus*) and South African Shelduck (*Tadorna cana*) are prominent.

Indicator species⁶: African Darter (*Anhinga rufa*), Reed Cormorant (*Microcarbo africanus*), White-breasted Cormorant (*Phalacrocorax lucidus*), Lesser Swamp Warbler (*Acrocephalus gracilirostris*), Little Rush Warbler (*Bradypterus baboecala*), Common Reed Warbler (*Acrocephalus scirpaceus*), Yellow-crowned Bishop (*Euplectes afer*), Yellow-billed Duck (*Anas undulata*), African Black Duck (*Anas sparsa*), Giant Kingfisher (*Megaceryle maxima*), Pied Kingfisher (*Ceryle rudis*) and Levaillant's Cisticola (*Cisticola tinniens*).

2. Association pertaining to microphyllous bushveld

This association is confined to *Vachellia karoo* and *V. erioloba* bush clumps located within a matrix of open savannoid and rocky grassland habitat.

Dominant species: Black-chested Prinia (*Prinia flavicans*), Chestnut-vented Warbler (*Curruca subcoerulea*), African red-eyed Bulbul (*Pycnonotus nigricans*), Southern Masked Weaver (*Ploceus velatus*), Brown-crowned Tchagra (*Tchagra australis*), Neddicky (*Cisticola fulvicapilla*), Willow Warbler (*Phylloscopus trochilus*), Cardinal Woodpecker (*Dendropicos fuscescens*), Green-winged Pytilia (*Pytilia melba*), Laughing Dove (*Spilopelia sengalensis*), Spotted Flycatcher (*Muscicapa striata*), Kalahari Scrub Robin (*Cercotrichas paena*), Acacia Pied Barbet (*Tricholaema leucomelas*) and White-throated Robin-chat (*Cossypha humeralis*).

Indicator species: Cardinal Woodpecker (*Dendropicos fuscescens*), White-browed Scrub Robin (*Cercotrichas leucophrys*), Barred Wren Warbler (*Calamonastes fasciolatus*), Violet-eared Waxbill (*Granatina granatina*), Black-faced Waxbill (*Brunhilda erythronotos*) and Crimson-breasted Shrike (*Laniarius atrococcineus*).

⁶ Indicator species refers to a species with high numbers that is restricted to a particular habitat.

3. Association confined to rocky grassland with bush clump mosaics

This association is confined to the open grassland with exposed ridges, and was mainly distributed along the eastern section of the proposed grid corridor and the BESS facility.

Dominant species: Desert Cisticola (*Cisticola aridulus*), Black-chested Prinia (*Prinia flavicans*), Chestnut-vented Warbler (*Curruca subcoerulea*), Southern Fiscal (*Lanius collaris*), Cloud Cisticola (*C. textrix*) and Rufous-naped Lark (*Mirafra africana*) are prominent.

Indicator species: Nicholson's Pipit (Anthus nicholsonii) and Plain-backed Pipit (A. leucophrys).

4. Association confined to open savannoid grassland with bush clump mosaics

This association is confined to the open grassland habitat located on the western section of the proposed grid corridor.

Dominant species: Desert Cisticola (*Cisticola* aridulus), Cloud Cisticola (*C. textrix*), Eastern Clapper Lark (*Mirafra faciolata*) and Cape Longclaw (*Macronyx capensis*) are prominent.

Indicator species: High numbers of African Pipit (*Anthus cinnamomeus*) and Spikeheeled Lark (*Chersomanes albofasciata*).

The highest number of bird species on the project area was observed from floodplain habitat and riparian woodland, followed by an association confined to dense Vachellia bushveld (Table 7). The latter two habitat types also support the highest number of bird individuals. The lowest number of bird species was recorded from the open savannoid grassland on the western parts of the study area.

Table 7: A summary of the observed species richness and number of bird individuals confined to the bird associations on the project area.

	Bird Association	Number of species	Number of Individuals	Shannon Wiener Index H'(log₀)
1.	Floodplain and riparian woodland	57	41.24	3.65
2.	Dense microphyllous bushveld	57	33.75	3.63
3.	Rocky grassland with bush clumps	52	12.05	3.54
4.	Open savannoid grassland with bush clumps	4	7.00	1.27

4.6 Passerine bird densities

Fifty-six passerine bird species were recorded from the point counts on the study site and immediate surroundings. The study site and immediate surroundings comprise of a mean of 12.82 species.ha⁻¹ (Appendix 2). The average density per hectare is 21.94 birds.ha⁻¹ and ranges between 1.28 birds.ha⁻¹ to 46.79 birds.ha⁻¹.

4.7 Movements/dispersal of Priority Collision-prone birds

Daily dispersal of waterbird taxa (Figure 24) was confined to large-bodied waterfowl (mainly Egyptian Goose *Alopochen aegyptiacus* and Spur-winged Goose *Plectropterus gambiensis*) which commute between foraging habitat either between the many of the livestock watering points in the area, the slimes dam to the north and the Vaal River in the south, which appeared to be frequent (regular). The nearby Vaal River and Koekemoerspruit is also regarded as an important dispersal corridors for waterbird species in the region.

The home ranges of approximately 2-3 Northern Black Korhaan pairs correspond to the proposed BESS facility and immediate surroundings (Figure 18), which will become displaced during the construction of the facility. Many Western Cattle Egret (*Bubulcus ibis*) also use the study area as foraging habitat, although their occurrence is primarily associated with the presence of grazing livestock.

Figure 18: A map of the study site illustrating the occurrence and movements of priority collision-prone species.

4.8 Avifaunal sensitivity

A sensitivity map was compiled, illustrating habitat units comprising of potential sensitive elements based on the following arguments (Figures 19 - 22):

Areas of high sensitivity

It includes the Koekemoerspruit and its floodplain, which is regarded as an important flyway for waterbirds, thereby also facilitating the dispersal of birds towards the Vaal River. Therefore, overhead powerline infrastructure spanning these avian flyways may result in increased bird collisions with waterbirds. The floodplain habitat also provided foraging habitat for the endangered African Marsh-harrier (*Circus ranivorus*).

Areas of medium sensitivity

These include open savannoid grassland, rocky grassland and bush clump mosaics which provide potential suitable foraging habitat for some collision-prone bird species, including the Northern Black Korhaan (*Afrotis afraoides*) with the potential to interact (e.g. collide) with the proposed electrical infrastructure.

Areas of low sensitivity

These habitat units are represented by transformed types and include the secondary/regenerating grassland, roads and build-up areas.

Figure 19: A map illustrating the avifaunal sensitivity of the study area based on habitat types supporting bird taxa of conservation concern and important ecological function.

Figure 20: A map illustrating the avifaunal sensitivity of the western section of the grid connection based on habitat types supporting bird taxa of conservation concern and important ecological function.

Figure 21: A map illustrating the avifaunal sensitivity of the central section of the grid connection based on habitat types supporting bird taxa of conservation concern and important ecological function.

Figure 22: A map illustrating the avifaunal sensitivity of the eastern section of the grid connection and the BESS facility based on habitat types supporting bird taxa of conservation concern and important ecological function.

4.9 Potential Impacts associated with the proposed BESS Facility

Table 8 provides a summary of the anticipated impacts.

The main impacts associated with the proposed facility and grid corridor include the following:

- The loss of habitat and subsequent displacement of bird species due to the ecological footprint required during construction;
- Disturbances caused to birds during construction and operation;
- Direct interaction (collision trauma) by birds with the surface infrastructure (photovoltaic panels) caused by polarised light pollution and/or waterbirds colliding with the panels (as they are mistaken for waterbodies);
- Collision and electrocution with overhead powerlines;
- Attracting novel species to the area (owing to the artificial provision of new habitat such as perches and shade) which could compete with the residing bird population.

4.9.1 Loss of habitat and displacement of birds at the BESS facility

It is anticipated that up to 25 ha will be required during the construction of the BESS facility and associated infrastructure. Construction of the facility will entail the clearing of vegetation and natural habitat to accommodate the BESS, panel arrays and associated infrastructure. Clearing of vegetation will inevitably result in the loss of habitat and displacement of bird species, which is primarily confined to habitat of medium avifaunal sensitivity. From the results, approximately 12.82 species.ha⁻¹ and 21.94 birds.ha⁻¹ will become displaced should the activity occur across all the habitat types on the study site (as per Jenkins et al., 2017). Displacement will mainly affect endemic passerine and smaller non-passerine species inhabiting the rocky grassland and associated bush clump mosaics of medium avifaunal sensitivity, with at least two to three pairs of Northern Black Korhaan that may become displace.

In addition, the upgrade of the access road will also involve clearing of vegetation, although the clearing is likely to be limited since the proposed road coincides with an existing gravel road.

The following bird species are most likely to be impacted by the loss of habitat due to their habitat requirements, endemism and conservation status (although not limited to) due to the proposed development:

- Northern Black Korhaan (Afrotis afraoides);
- Barred Wren-warbler (Calamonastes fasciolatus);
- Kalahari Scrub Robin (Cercotrichas paena);
- Orange River Francolin (Scleroptila gutturalis); and
- Melodious Lark (*Mirafra cheniana*).

4.9.2. Creation of "new" avian habitat and bird pollution

It is possible that the infrastructure (during operation) could inadvertently attract bird species which may occupy the site or interact with the local (native) bird assemblages in the wider region. These include alien and cosmopolitan species, as well as aggressive omnivorous passerines which could displace other bird species from the area:

- House Sparrow (*Passer domesticus*);
- Common Myna (*Acridotheres tristis*);
- Pied Crow (Corvus albus); and
- Speckled Pigeon (*Columba guinea*).

The infrastructure may attract large numbers of roosting columbid taxa, especially Speckled Pigeons (*Columba guinea*), which may result in avian "pollution" through excreta, thereby fouling the panel surfaces.

4.9.3 Collision trauma caused by photovoltaic panels (the "lake-effect")

The BESS facility does not overlap with any major flyway and major wetlandassociated, which explain the low occurrence of waterbird taxa at the BESS site, apart from the daily occurrence of passing Egyptian Goose (*Alopochen aegyptiacus*), Spurwinged Goose (*Plectropterus gambiensis*) and Hadeda Ibis (*Bostrychia hagedash*).

However, it is recommended that appropriate bird deterrent devices should be installed at strategic localities (e.g. at the corners of the PV facility), and these should include a combination of rotating flashers/reflectors to increase the visibility of the infrastructure...

Site observations show that the following species could potentially interact with the panel infrastructure:

- South African Shelduck (*Tadorna cana*);
- Egyptian Goose (*Alopochen aegyptiaca*);
- Yellow-billed Duck (Anas undulata);
- Red-billed Teal (*Anas erythrorhynchus*);
- Reed Cormorant (*Microcarbo capensis*);
- African Sacred Ibis (*Threskiornis aethiopicus*), and potentially also
- Glossy Ibis (Plegadis falcinellus);
- Red-knobbed Coot (Fulica cristata);
- Black-headed Heron (Ardea melanocephala);
- Cape Shoveler (Anas smithii);
- White-faced Whistling Duck (Dendrocygna viduata); and
- Spur-winged Goose (Plectropterus gambiensis).

4.9.4 Interaction with overhead powerlines and reticulation

Energy will be evacuated via the Eskom switching station at the BESS facility to the Hermes Main Transmission substation via a 132 kV overhead powerline of up to 11.5 km long. Birds are impacted in three ways by means of overhead powerlines (described below). It is however a common rule that large and heavy-bodied terrestrial bird species are more at risk of being affected in a negative way when interacting with powerlines in general. These include the following:

Electrocution

Electrocution happens when a bird bridges the gap between the live components or a combination of a live and earth component of a power line, thereby creating a short circuit. This happens when a bird, mainly a species with a fairly large wingspan attempts to perch on a tower or attempts to fly-off a tower. Many of these species include vultures (of the genera *Gyps* and *Torgos*) as well as other large birds of prey such as the Martial Eagle (*Polemaetus bellicosus*) (Ledger & Annegarn, 1981; Kruger,

1999; Van Rooyen, 2000). These species will attempt to roost and even breed on the tower structures if available nesting platforms are a scarce commodity in the area. Other types of electrocutions happen by means of so-called "bird-streamers". This happens when a bird, especially when taking off, excretes and thereby causes a short-circuit through the fluidity excreta (Van Rooyen & Taylor, 1999).

Large transmission lines (from 220 kV to 765 kV) are seldom a risk of electrocution, although smaller distribution lines (88 - 132kV) pose a higher risk. However, for this project, the design of the pylon is an important consideration in preventing bird electrocutions.

• Collision

Collisions with earth wires have probably accounted for most bird-powerline interactions in South Africa. In general, the earth wires are much thinner in diameter when compared to the live components, and therefore less visible to approaching birds. Many of the species likely to be affected include heavy, large-bodied terrestrial species such as bustards, korhaans and a variety of waterbirds that are not very agile or manoeuvrable once airborne. These species, especially those with the habit of flying with outstretched necks (e.g. most species of storks) find it difficult to make a sudden change in direction while flying – resulting in the bird flying into the earth wires.

Areas where bird collisions are likely to be high could be ameliorated by marking the lines with appropriate bird deterrent devices such as "bird diverters" and "flappers" to increase the visibility of the lines. For the current project it is proposed that the overhead powerlines (including existing lines) consider the fitment of dynamic devices such as the "Viper live bird flapper" (see section below dealing with mitigation measures), especially spans crossing the Koekemoerspruit and its floodplain. In addition, it is also recommended that the earth wires spanning sections of open grassland east of the Koekemoerspruit be fitted with bird flight diverters since this area provide suitable foraging habitat for large terrestrial bird species, for example Secretarybirds (*Sagittarius serpentarius*) and White Storks (*Ciconia ciconia*).

• Physical disturbances and habitat destruction caused during construction and maintenance

It is anticipated that part of the powerline line servitude will be cleared of vegetation. In addition, construction activities go hand in hand with high ambient noise levels. Although construction is considered temporary, many species will vacate the area during the construction phase and will become temporarily displaced.

Table 8: The quantification of impacts associated with the proposed PV facility and its infrastructure.

1. Nature:

Losses of natural habitat and displacement of birds through physical transformation, modifications, removals and land clearance. This impact is mainly restricted to the construction phase and is permanent.

BESS and PV Layout (and associated infrastructure.	Without mitigation	With mitigation	
including access road)			
Extent	Local (2)	Site (1)	
Duration	Long-term (4)	Long-term (4)	
Magnitude	Moderate (6)	Low (4)	
Probability	Definite (5)	Highly Probable (4)	
Significance	Medium (60)	Medium (36)	
Status (positive or negative)	Negative	Negative	
Reversibility	Low	Low	
Irreplaceable loss of resources?	Yes	Yes	
Can impacts be mitigated?	Yes, to some extent	Yes, to some extent	

Mitigation:

It is difficult to mitigate against the loss of habitat since clearing of vegetation (or habitat) will be required for the infrastructure associated with the project. The BESS facility and associated infrastructure occur predominantly on habitat types of medium sensitivity. The best practicable mitigation will be to consolidate and to avoid areas of high sensitivity.

Residual:

Decreased bird species richness, low evenness values and subsequent loss of avian diversity on a local scale. The impact will also result in fragmentation of habitat.

2. Nature:

The creation of novel or new avian habitat for commensal bird species or superior competitive species. This is expected to occur during the operation phase of the facility.

-		
BESS and PV Layout	Without mitigation	With mitigation
Extent	Footprint (1)	Footprint (1)
Duration	Medium-term (3)	Medium-term (3)
Magnitude	Minor (2)	Minor (2)
Probability	Probable (3)	Improbable (2)
Significance	Low (18)	Low (12)
Status (positive or negative)	Negative	Negative
Reversibility	Moderate	Moderate
Irreplaceable loss of resources?	No	No
Can impacts be mitigated?	Yes, with experimentation	Yes

Mitigation:

Apply bird deterrent devices and remove nest structures constructed on infrastructure associated with the BESS and PV infrastructure under the guidance of the ECO.

Residual:

Secondary displacement by completive bird species such as crows and increased fecundity rate for commensal bird species that are adapted to anthropogenic activities. The impact is regarded as low.

3. Nature:						
Avian collision impacts related to the PV arrays during the operation phase (collision with the PV panels).						
PV arrays	Without mitigation	With mitigation				
Extent	Site and immediate surroundings	Site (2)				
	(4)					
Duration	Long-term (4)	Medium-term (3)				
Magnitude	Moderate (6)	Low (4)				
Probability	Probable (3)	Probable (3)				
Significance	Medium (42)	Low (27)				
Status (positive or negative)	Negative	Negative				
Reversibility	Low	Low				
Irreplaceable loss of resources?	Yes, potential loss of waterfowl	fowl Yes, potential loss of some				
l	species.	waterfowl species.				
Can impacts be mitigated?	Yes, with experimentation	Yes, with experimentation				
	-					

Mitigation:

Apply bird deterrent devices such as rotating flashers/reflectors to the panels for birds that may mistake the panels for open water and to prevent them from landing on the panels - Document bird mortalities and conduct direct observations and carcass searches on a regular and systematic basis - apply deterrent devices at areas where mortalities are prevalent.

Residual:

Direct mortality is possible and may still occur irrespective of applied mitigation measures. Regular and systematic monitoring is proposed to assess the efficacy of applied mitigation and further research and testing is suggested to improve mitigation measures (e.g. bird deterrent devices). The residual impact is regarded as moderate.

4. Nature:

Avian collision impacts related to overhead power lines during operation.

	· · · · · · · · · · · · · · · · · · ·					
Overhead powerline corridor	Without mitigation	With mitigation				
Extent	Local (2)	Local (2)				
Duration	Long-term (4)	Long-term (4)				
Magnitude	High (8)	Moderate (6)				
Probability	Highly Probable (4)	Highly Probable (4)				
Significance	Medium (56)	Medium (48)				
Status (positive or negative)	Negative	Negative				
Reversibility	Low	Low				
Irreplaceable loss of resources?	Yes (to some extent), owing to the	Yes (to some extent), owing to the				
	potential collision by terrestrial	potential collision by terrestrial				
	birds, waterbird species and certain	birds, waterbird species and certain				
	bird of prey species.	bird of prey species.				
Can impacts be mitigated?	Yes	Yes				

Mitigation:

Apply bird deterrent devices to the power lines and make use of "bird-friendly" pylon structures. To aid postconstruction monitoring and/or monitoring of bird mortality rates, it is advised to conduct direct observations and carcass searches on a regular and systematic basis.

Residual:

Direct mortality is possible and may still happen irrespective of applied mitigation measures. The residual impact will be low.

Overhead powerline corridors	Without mitigation	With mitigation
(both options)		
Extent	Local (2)	Site (1)
Duration	Long-term (4)	Long-term (4)
Magnitude	High (8)	Moderate (6)
Probability	Highly Probable (4)	Probable (3)
Significance	Medium (56)	Low -Medium (33)
Status (positive or negative)	Negative	Negative
Reversibility	Low	Low
Irreplaceable loss of resources?	Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species.	Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species.
Can impacts be mitigated?	Yes, to some extent	Yes, to some extent

4.10 Collision-prone bird species

A total of 70 collision-prone bird species have been recorded from the wider project area, and could potentially collide with the overhead powerline (Table 9). In addition, approximately 38 species of these species have been confirmed along the grid corridor and immediate surroundings. According to SABAP Reporting Rates, species with full protocol reporting rates >20% have a higher probability to interact with the proposed overhead powerline.

Table 9: Powerline collision-prone bird species known to be present on the study area and immediate surroundings inferred from the South African Atlas Project (SABAP2).

Common Name	Colontific Nome	Observed		SABAP2 R	eporting Rates	
Common Name	Scientific Name	Observed	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards
Hadada Ibis	Bostrychia hagedash	1	85.49	442.00	25.96	27.00
Speckled Pigeon	Columba guinea	1	82.40	426.00	22.12	23.00
Western Cattle Egret	Bubulcus ibis	1	73.69	381.00	32.69	34.00
Egyptian Goose	Alopochen aegyptiaca	1	69.25	358.00	20.19	21.00
Yellow-billed Duck	Anas undulata	1	66.92	346.00	17.31	18.00
Reed Cormorant	Microcarbo africanus	1	63.64	329.00	16.35	17.00
Helmeted Guineafowl	Numida meleagris	1	62.86	325.00	17.31	18.00
Black-winged Kite	Elanus caeruleus	1	45.26	234.00	15.38	16.00
Northern Black Korhaan	Afrotis afraoides	1	44.68	231.00	16.35	17.00
African Darter	Anhinga rufa	1	38.49	199.00	12.50	13.00
African Sacred Ibis	Threskiornis aethiopicus	1	37.33	193.00	14.42	15.00
Red-billed Teal	Anas erythrorhyncha	1	33.27	172.00	4.81	5.00
Black-headed Heron	Ardea melanocephala	1	32.88	170.00	8.65	9.00
White-faced Whistling Duck	Dendrocygna viduata	1	31.91	165.00	6.73	7.00
South African Shelduck	Tadorna cana	1	31.72	164.00	13.46	14.00
Spur-winged Goose	Plectropterus gambensis	1	30.95	160.00	9.62	10.00
Grey Heron	Ardea cinerea	1	27.08	140.00	8.65	9.00
Glossy Ibis	Plegadis falcinellus	1	21.66	112.00	4.81	5.00
White-breasted Cormorant	Phalacrocorax lucidus	1	20.89	108.00	5.77	6.00
Gabar Goshawk	Micronisus gabar	1	20.70	107.00	7.69	8.00
Black-crowned Night Heron	Nycticorax nycticorax		17.41	90.00	2.88	3.00

Common Name	Saiantifia Nama	SABAP2 Reporting Rates		eporting Rates		
Common Name	Scientific Name	Observed	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards
Little Egret	Egretta garzetta	1	17.41	90.00	2.88	3.00
African Spoonbill	Platalea alba	1	15.09	78.00	2.88	3.00
Purple Heron	Ardea purpurea	1	13.93	72.00	0.00	0.00
African Fish Eagle	Haliaeetus vocifer	1	10.83	56.00	3.85	4.00
Squacco Heron	Ardeola ralloides		10.44	54.00	0.96	1.00
Striated Heron	Butorides striata	1	10.44	54.00	2.88	3.00
African Black Duck	Anas sparsa	1	9.48	49.00	2.88	3.00
Orange River Francolin	Scleroptila gutturalis	1	9.09	47.00	2.88	3.00
Fulvous Whistling Duck	Dendrocygna bicolor		8.12	42.00	3.85	4.00
Cape Shoveler	Spatula smithii		7.93	41.00	6.73	7.00
Common Buzzard	Buteo buteo	1	7.93	41.00	1.92	2.00
Greater Kestrel	Falco rupicoloides		6.96	36.00	6.73	7.00
Amur Falcon	Falco amurensis		6.58	34.00	3.85	4.00
Hamerkop	Scopus umbretta	1	6.19	32.00	0.00	0.00
Black Heron	Egretta ardesiaca		6.00	31.00	1.92	2.00
Lesser Kestrel	Falco naumanni	1	5.03	26.00	2.88	3.00
Peregrine Falcon	Falco peregrinus		5.03	26.00	0.96	1.00
Lanner Falcon	Falco biarmicus	1	4.84	25.00	2.88	3.00
Goliath Heron	Ardea goliath		4.26	22.00	0.00	0.00
Black Sparrowhawk	Accipiter melanoleucus	1	4.06	21.00	1.92	2.00
European Honey-buzzard	Pernis apivorus		3.87	20.00	0.96	1.00
Yellow-billed Egret	Ardea brachyrhyncha		3.68	19.00	1.92	2.00
Western Barn Owl	Tyto alba	1	3.48	18.00	0.96	1.00
African Harrier-Hawk	Polyboroides typus		3.29	17.00	0.96	1.00
Southern Pochard	Netta erythrophthalma		2.90	15.00	1.92	2.00

Common Namo	Scientific Name	SABAP2 Reporting Rat			eporting Rates	
Common Name	Scientific Name	Observed	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards
Great Egret	Ardea alba		2.32	12.00	0.96	1.00
Spotted Eagle-Owl	Bubo africanus	1	2.32	12.00	0.96	1.00
Ovambo Sparrowhawk	Accipiter ovampensis	1	2.13	11.00	0.96	1.00
Blue-billed Teal	Spatula hottentota		1.93	10.00	1.92	2.00
Cape Teal	Anas capensis		1.74	9.00	0.00	0.00
Marsh Owl	Asio capensis	1	1.74	9.00	1.92	2.00
Rock Kestrel	Falco rupicolus		1.74	9.00	0.96	1.00
Pale Chanting Goshawk	Melierax canorus	1	1.16	6.00	0.96	1.00
Long-crested Eagle	Lophaetus occipitalis		0.97	5.00	0.00	0.00
Yellow-billed Kite	Milvus aegyptius		0.97	5.00	0.96	1.00
Black-chested Snake Eagle	Circaetus pectoralis		0.77	4.00	0.00	0.00
Greater Flamingo	Phoenicopterus roseus		0.77	4.00	0.96	1.00
White Stork	Ciconia ciconia		0.77	4.00	0.96	1.00
Yellow-billed Stork	Mycteria ibis		0.77	4.00	0.00	0.00
Abdim's Stork	Ciconia abdimii		0.58	3.00	0.00	0.00
Black-winged Pratincole	Glareola nordmanni		0.58	3.00	0.96	1.00
Cape Vulture	Gyps coprotheres		0.58	3.00	0.96	1.00
White-backed Vulture	Gyps africanus		0.58	3.00	0.96	1.00
Cape Crow	Corvus capensis		0.39	2.00	0.00	0.00
Knob-billed Duck	Sarkidiornis melanotos		0.39	2.00	0.00	0.00
African Marsh Harrier	Circus ranivorus		0.19	1.00	0.00	0.00
Martial Eagle	Polemaetus bellicosus		0.19	1.00	0.00	0.00
Secretarybird	Sagittarius serpentarius		0.19	1.00	0.00	0.00
Brown Snake Eagle	Circaetus cinereus		0.00	0.00	0.96	1.00

4.11 Cumulative Impacts

Cumulative impacts are defined as impacts that result from additional or incremental activities caused by past or present actions together with the current project. Therefore, cumulative impacts are those that will affect the general avifaunal community on the study area due to other planned solar farm projects and electrical infrastructure in the region.

There are at least 26 solar PV facilities (all approved) within 30 km of the proposed BESS facility and grid corridor which may have a cumulative impact (Table 10).

Table 10: Solar PV developments with an approved Environmental Authorisation within 30 km of the proposed study area.

No	EIA Reference No	Classification	Status of application	Distance from proposed area (km)
1	12/12/20/2513/2/AM1	Solar PV	Approved	4.3
2	14/12/16/3/3/1/2739	Solar PV	Approved	10.7
3	14/12/16/3/3/1/2668	Solar PV	Approved	28.5
4	14/12/16/3/3/1/2743	Solar PV	Approved	9.6
5	14/12/16/3/3/1/2475	Solar PV	Approved	10.6
6	14/12/16/3/3/1/2748	Solar PV	Approved	9.5
7	14/12/16/3/3/1/2548	Solar PV	Approved	24.6
8	14/12/16/3/3/1/2476	Solar PV	Approved	3.8
9	14/12/16/3/3/2/777/AM2	Solar PV	Approved	0
10	14/12/16/3/3/1/2691	Solar PV	Approved	21
11	12/12/20/2513/4	Solar PV	Approved	4.3
12	14/12/16/3/3/1/2365	Solar PV	Approved	11.7
13	14/12/16/3/3/1/2667	Solar PV	Approved	29.8
14	14/12/16/3/3/1/2747	Solar PV	Approved	14.8
15	12/12/20/2513/2	Solar PV	Approved	8.1
16	14/12/16/3/3/1/2669	Solar PV	Approved	28.6
17	14/12/16/3/3/2/954	Solar PV	Approved	27.2
18	14/12/16/3/3/1/2744	Solar PV	Approved	10.6
19	14/12/16/3/3/2/1/2369	Solar PV	Approved	9.2
20	14/12/16/3/3/1/2546	Solar PV	Approved	21
21	14/12/16/3/3/1/2533	Solar PV	Approved	3.8
22	12/12/20/2513/3/AM6	Solar PV	Approved	4.3
23	14/12/16/3/3/2/777	Solar PV	Approved	0
24	14/12/16/3/3/1/2730	Solar PV	Approved	16.1
25	12/12/20/2513/3/AM2	Solar PV	Approved	4.3
26	14/12/16/3/3/1/2742	Solar PV	Approved	10.6

The cumulative impacts are likely to increase the displacement and loss of habitat at a regional scale of which the grid connection (via overhead powerlines) of these facilities could also potentially contribute towards a higher frequency of bird strikes with earth wires resulting in avian mortalities.

A summary of the cumulative impacts is provided in Table 11.

Table 11: A summary of the cumulative impacts.

1. Nature:						
Regional losses of natural habitat and subsequent displacement of birds.						
	Overall impact of the proposed	Cumulative impact of the project				
	project considered in isolation	and other projects in the area				
Extent	Site (1)	Local and immediate surroundings				
		(3)				
Duration	Long-term (4)	Long-term (4)				
Magnitude	Low (4)	Moderate (6)				
Probability	Highly Probable (4)	Highly Probable (4)				
Significance	Medium (36)	Medium (52)				
Status (positive or negative)	Negative	Negative				
Reversibility	Low	Low				
Loss of resources?	Yes	Yes				
Can impacts be mitigated?	Yes, to some extent	To some extent				
Confidence in findings:		•				
High.						
Mitigation:						

It is difficult to mitigate against the loss of habitat without considering alternative sites. The best practicable mitigation will be to consolidate infrastructure (e.g. proposed powerline) to areas where existing impacts occur (e.g. placing the proposed powerline alongside existing powerlines), where possible and to concentrate infrastructure on land with a low biodiversity conservation value.

2. Nature:

Avian collision impacts related to the PV arrays during the operational phase (collision with the PV panels).

	Overall impact of the proposed	Cumulative impact of the project
	project considered in isolation	and other projects in the area
Extent	Site (2)	Local and immediate surroundings
		(3)
Duration	Medium-term (3)	Long-term (4)
Magnitude	Low (4)	Moderate (6)
Probability	Probable (3)	Probable (4)
Significance	Low (27)	Medium (52)
Status (positive or negative)	Negative	Negative
Reversibility	Low	Low
Irreplaceable loss of resources?	Yes, potential loss of waterfowl	Yes, potential loss of waterfowl
Can impacts be mitigated?	Yes, to some extent	Yes, to some extent
Confidence in findings:	•	•

Confidence in findings:

Low. Mitigation:

Apply bird deterrent devices to the panels for birds that may mistake the panels for open water and to prevent them from landing on the panels. Conduct direct observations and carcass searches on a regular and systematic basis. Apply appropriate buffer zones to nearby water features and wetlands.

3. Nature:

Avian collision impacts related to the powerline reticulation and new distribution lines during operation.

	Overall impact of the proposed project considered in isolation	Cumulative impact of the project and other projects in the area
Extent	Local (2)	Local and immediate surroundings (3)
Duration	Long-term (4)	Long-term (4)

Magnitude	Moderate (6)	Moderate (6)		
Probability	Highly Probable (4)	Highly Probable (4)		
Significance	Medium (48)	Medium (52)		
Status (positive or negative)	Negative	Negative		
Reversibility	Low	Low		
Irreplaceable loss of resources?	Yes (to some extent), owing to the	Yes (to some extent), owing to the		
	potential collision by terrestrial	potential collision by terrestrial		
	birds, waterbird species and certain	birds, waterbird species and certain		
	bird of prey species.	bird of prey species.		
Can impacts be mitigated?	Yes, to some extent	Yes, to some extent		
Confidence in findings:				
High.				
Mitigation:				
Apply bird deterrent devices to the	power line and make use of "bird-f	riendly" pylon structures. Allow for		
construction of new powerlines	parallel to existing lines. To aid	post-construction monitoring and/or		
monitoring of bird mortality rates, it is	s advised to conduct direct observation	is and carcass searches on a regular		
and systematic basis.				
4. Nature:				
Avian electrocution related to the por	werline reticulation and new distribution	n lines during operation.		
Avian electrocution related to the por	werline reticulation and new distribution Without mitigation	n lines during operation. With mitigation		
Avian electrocution related to the por Extent	werline reticulation and new distribution Without mitigation Site (1)	n lines during operation. With mitigation Local (2)		
Avian electrocution related to the por Extent Duration	werline reticulation and new distribution Without mitigation Site (1) Long-term (4)	n lines during operation. With mitigation Local (2) Long-term (4)		
Avian electrocution related to the por Extent Duration Magnitude	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6)	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6)		
Avian electrocution related to the por Extent Duration Magnitude Probability	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3)	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4)		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33)	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48)		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative)	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources?	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the	n lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources?	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial	With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources?	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain	 h lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain 		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources?	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species.	With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species.		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources? Can impacts be mitigated?	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent	Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species.		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources? Can impacts be mitigated? Confidence in findings:	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent	 h lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent 		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources? Can impacts be mitigated? Confidence in findings: Moderate.	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent	With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent		
Avian electrocution related to the por Extent Duration Magnitude Probability Significance Status (positive or negative) Reversibility Irreplaceable loss of resources? Can impacts be mitigated? Confidence in findings: Moderate. Mitigation:	werline reticulation and new distribution Without mitigation Site (1) Long-term (4) Moderate (6) Probable (3) Low -Medium (33) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent	 h lines during operation. With mitigation Local (2) Long-term (4) Moderate (6) Highly Probable (4) Medium (48) Negative Low Yes (to some extent), owing to the potential collision by terrestrial birds, waterbird species and certain bird of prey species. Yes, to some extent 		

friendly pylons and bird guards. Position electrical infrastructure in close proximity to existing infrastructure.

4.12 Recommended mitigation

4.12.1 Loss of habitat and displacement bird taxa

 Concentrate all surface infrastructure on habitat of medium and low avifaunal sensitivity. The development footprint of the various individual facilities must be kept as small as possible and sensitive habitats must be avoided. Avoid habitat with high avifaunal sensitivity (e.g. avoid the placement of pylons within the floodplain of the Koekemoerspruit).

- Prevent an overspill of construction activities into areas that are not part of the proposed construction site.
- Use indigenous plant species native to the study area during landscaping and rehabilitation.
- The development footprint of the pylon structures must be kept as small as possible.
- Make use of existing access roads and tracks (where possible) during the construction and stringing of the powerline.

4.12.2 Creation of "new" avian habitat and bird pollution

The following mitigation measures are proposed:

- Apply bird deterrent devices at selective areas (for example at the corners and middle part of the facility) to the PV arrays to discourage birds from colonising the infrastructure or to discourage birds from constructing nests. These could include visual or bio-acoustic deterrents such as highly reflective rotating devices, anti-perching devices such as bird guards, scaring or chasing activities involving the use of trained dogs or raptors and/or netting. Nests should be removed when nest-building attempts are noticed under the guidance of the ECO.
- Reduce or minimise the use of outdoor lighting to avoid attracting birds to the lights or to reduce potential disorientation to migrating birds.
- Use indigenous plant species native to the study area during landscaping and rehabilitation.

4.12.3 Collision trauma caused by photovoltaic panels (the "lake-effect")

The following mitigation measures are proposed:

- Apply bird deterrent devices to the panels at selective areas (for example at the corners and middle part of the facility) to discourage birds from potentially colonising/colliding with the infrastructure. Bird deterrent devices should be placed at the corners and middle part of the PV arrays. These could include visual or bio-acoustic deterrents such as highly reflective rotating devices, flashers, anti-perching devices such as bird guards, scaring or chasing activities involving the use of trained dogs or raptors and/or netting. An option is to employ video cameras at selected areas to document bird mortalities.
- Apply systematic reflective/dynamic markers to the boundary fence to increase the visibility of the fence for approaching birds (e.g. korhaan/bustard taxa) and to avoid potential bird collisions with the fence structure.
- Reduce or minimise the use of outdoor lighting to avoid attracting birds to the lights or to reduce potential disorientation to migrating/disperding birds.
- 4.12.4 Power line interaction: collision and electrocution with power lines

The following mitigation measures are proposed:

- A "walk-through" of the powerline corridor must be conducted prior to the construction phase. The "walk-through" will aim to identify areas where marking of earth wires by means of "bird flight devices" is considered to be beneficial or compulsory.
- In general, the proposed pylon design must incorporate the following design parameters:
 - The clearances between the live components should be as wide as possible within the design limitations/capabilities of the power line.
 - The height of the tower should allow for unrestricted movement of terrestrial birds between successive pylons.
 - The live components should be "bundled" to increase the visibility for approaching birds.
 - "Bird streamers" should be eliminated by discouraging birds from perching above the conductors. In addition, conductors should be strung below the pole to avoid bridging the air gap by perching birds of prey.

It is therefore recommended that the pylon design incorporates "features as illustrated in Figure 23⁷.

From Figure 23 it is clear that perching by birds is discouraged by the addition of diagonal crossbars or by doing away with the crossbars that holds the conductors in place. Bird "streamers" are also eliminated by fitting the poles with bird guards/spikes above the conductors. However, safe perching is facilitated by the fitment of a horizontal bar on top of the pole structure without the risk of electrocution (due to the perpendicular orientation of the bar relative to the conductors).

Figure 23: Two bird-friendly tower designs to be considered for the current project.

⁷ Please note that these are examples of recommended pylon designs. These are taken from steel monopole pylons.

- Where possible make use of the Viper Live bird flapper as an appropriate bird flight diverter for the powerline (Figure 24). Dynamic devices (e.g. Viper live bird flapper), should be applied to earth wires while alternating between different colours (e.g. between black and yellow or black and red) and should be fitted to the middle 60 % of the span (corresponding to the lower part of the span). All devices should be spaced at 5 m intervals from each other.
- Where wetlands and floodplains are spanned (e.g. the Koekemoerspruit), it is recommended that the actual crossover span as well as one span on either side of the wetland/ floodplain be marked with diverters.
- The spanning of wetland and floodplain crossings should be perpendicular to the natural channel of the wetland/floodplain.

Figure 24: An example of a bird flight diverter to be used on the powerline: Viper live bird flapper.

4.12.5 General mitigation measures

- All construction sites/areas must be demarcated on site layout plans (preferably), and no construction personnel or vehicles may leave the demarcated area except those authorised to do so. Those areas surrounding the construction sites that are not part of the demarcated development area should be considered as "no-go" areas for employees, machinery or even visitors.
- All road networks must be planned with care to minimise dissection or fragmentation of important avifaunal habitat type. Where possible, the use of existing roads is encouraged.
- Open fires are strictly prohibited and only allowed at designated areas.
- Killing or poaching of any bird species should be avoided by means of awareness programs presented to the labour force. The labour force should be made aware of the conservation issues pertaining to the bird taxa occurring on

the study site. Any person found deliberately harassing any bird species in any way should face disciplinary measures, following the possible dismissal from the site.

• Checks must be carried out at regular intervals to identify areas where erosion is occurring. Appropriate remedial action, including the rehabilitation of eroded areas should be undertaken.

4.13 Opinion regarding the feasibility of the project

Pachnoda Consulting cc was requested by Kareerand BESS (Pty) Ltd to compile an avifauna baseline report for the proposed construction of the Kareerand Battery Energy Storage (BESS) Facility, consisting of a BESS and solar photovoltaic (PV) infrastructure. The Kareerand BESS facility will be located approximately 22 km east of Klerksdorp within the North West Province.

Seven avifaunal habitat types were identified on the study area and surroundings, consisting of open grassland with bush clumps (ranging from open savannoid grassland to rocky grassland), wetlands and floodplains, secondary grassland and Vachellia dominated bushveld. The wetlands and floodplains (e.g. Koekemoerspruit) provided foraging, roosting and breeding habitat for many waterbird and wading bird taxa, although the occurrence of such taxa on the BESS facility was considered to be low. Approximately 286 bird species were expected to occur in the wider study area, of which 210 species were observed in the area. The expected richness included 12 threatened or near threatened bird species. However, the occurrence of threatened and near threatened bird species was predicted to be low, apart from the regionally vulnerable Lanner Falcon (Falco biarmicus) which was regarded as a regular foraging visitor to the area. In addition, large sections of open grassland east of the Koekemoerspruit (along the proposed grid connection) provided suitable foraging habitat for Secretarybirds (Sagittarius serpentarius), although this species was regarded as uncommon in the area (sensu SABAP Reporting rates). Approximately,17 southern African endemics and 23 near-endemic species were expected to be present.

An evaluation of potential and likely impacts on the avifauna revealed that the impact significance was moderate to low after mitigation (depending on the type of impact). No fatal-flaws were identified during the assessment, although it was recommended that the proposed mitigation measures a be implemented during the construction and operational phase of the project.

5. REFERENCES

Birdlife South Africa. 2022. BirdLife South Africa Checklist of Birds in South Africa, 2022.

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L. 1993. *Distance Sampling: Estimating abundance of biological populations*. Chapman and Hall, London.

Clarke, K.R. & Warwick, R.M. 1994. *Changes in marine communities: An approach to statistical analysis and interpretation*. Natural Environmental Research Council, United Kingdom.

Del Hoyo, J., Elliott, A. & Christie, D.A. eds. 1992-2011. *Handbook of the Birds of the World.* Vol 1-16. Lynx Edicions, Barcelona.

Geoterrainimage. 2020. The South African National Land cover Dataset. .

Gill, F, Donsker, D., & Rasmussen, P. (Eds). 2024. *IOC World Bird List* (v 14.1). Doi 10.14344/IOC.ML.12.1. http://www.worldbirdnames.org/.

Hardaker, T. 2022. Southern African Bird List - Version 11 - 29 August 2022.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). 1997. *The Atlas of Southern African Birds. Vol. 1 & 2*. BirdLife South Africa, Johannesburg.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (eds.) 2005. *Roberts – Birds of Southern Africa*, VIIth ed. The Trustees of the John Voelker Bird Book Fund, Cape Town.

IUCN Red List of Threatened Species. Version 2023. http://www.iucnredlist.org/.

Jenkins, A.R, Ralston-Paton, S & Smit-Robinson, H.A. 2017. Best practice guidelines: Birds and Solar Energy. Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa. BirdLife South Africa.

Kruger, R. 1999. *Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa.* M. Phil. Mini-thesis. University of the Orange Free State. Bloemfontein. South Africa.

Ledger, J. & Annegarn, H.J. 1981. Electrocution Hazards to the Cape Vulture (*Gyps coprotheres*) in South Africa. *Biological Conservation* 20: 15-24.

Marnewick, M.D., Retief, E.F., Theron, N.T., Wright, D.R. And Anderson, T.A. 2015. *Important Bird and Biodiversity Areas of South Africa*. Johannesburg: BirdLife South Africa.

Mucina, L. & Rutherford, M.C. (eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia 19*. South African National Biodiversity Institute, Pretoria.

Sutherland, W.J. 2006. *Ecological census techniques. A handbook*. 2nd Edn. Cambridge University Press.

Sutherland, W.J., Newton, I. and Green, R. E. 2004. *Bird Ecology and Conservation. A handbook of techniques*. Oxford University Press.

Taylor, M.R., Peacock, F. & Wanless, R. (eds.). 2015. *The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland*. BirdLife South Africa, Johannesburg

Van Rooyen, C.S. 2000. An overview of Vulture Electrocutions in South Africa. *Vulture News* 43: 5-22.

Van Rooyen, C.S. & Taylor, P.V. 1999. *Bird streamers as probable cause of electrocutions in South Africa*. EPRI Workshop on Avian Interactions with Utility Structures, Charleston, South Carolina.

Vosloo, H. 2003. Birds and power lines. *ESI Africa* 3: 38. Watson, D.M. 2003. The 'standardized search': An improved way to conduct bird surveys. *Austral Ecology* 28: 515-525

www.sabap2.birdmap.africa
Appendix 1: A shortlist of bird species expected to be present on the study area and immediate surrounding. The list provides an indication of the species occurrence according to SABAP2 reporting rates. The list was derived (and modified) from species observed in pentad grids 2650_2645, 2650_2650, 2655_2645 and 2655_2550 and from personal observations. The reporting rates include submissions made during the August/September and November/December 2023 surveys.

	Common Name	Scientific Name	Observed (Aug, Nov 2023 & Jan 2024)	SABAP2 Reporting Rates				
#				Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
78	Abdim's Stork	Ciconia abdimii		0.58	3.00	0.00	0.00	
432	Acacia Pied Barbet	Tricholaema leucomelas	1	57.45	297.00	15.38	16.00	
95	African Black Duck	Anas sparsa	1	9.48	49.00	2.88	3.00	
380	African Black Swift	Apus barbatus		0.77	4.00	0.00	0.00	
199	African Crake	Crecopsis egregia		0.39	2.00	0.00	0.00	
127	African Cuckoo-Hawk	Aviceda cuculoides		0.77	4.00	0.00	0.00	
52	African Darter	Anhinga rufa	1	38.49	199.00	12.50	13.00	
149	African Fish Eagle	Haliaeetus vocifer	1	10.83	56.00	3.85	4.00	
360	African Grass Owl	Tyto capensis		0.19	1.00	0.00	0.00	
171	African Harrier-Hawk	Polyboroides typus		3.29	17.00	0.96	1.00	
418	African Hoopoe	Upupa africana	1	54.74	283.00	8.65	9.00	
167	African Marsh Harrier	Circus ranivorus		0.19	1.00	0.00	0.00	
387	African Palm Swift	Cypsiurus parvus	1	59.57	308.00	17.31	18.00	
682	African Paradise Flycatcher	Terpsiphone viridis	1	15.67	81.00	2.88	3.00	
685	African Pied Wagtail	Motacilla aguimp	1	11.22	58.00	0.00	0.00	
692	African Pipit	Anthus cinnamomeus	1	35.40	183.00	9.62	10.00	
197	African Rail	Rallus caerulescens	1	12.19	63.00	0.00	0.00	
544	African Red-eyed Bulbul	Pycnonotus nigricans	1	94.39	488.00	20.19	21.00	
606	Common Reed Warbler	Acrocephalus scirpaceus	1	23.79	123.00	3.85	4.00	
81	African Sacred Ibis	Threskiornis aethiopicus	1	37.33	193.00	14.42	15.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
250	African Snipe	Gallinago nigripennis	1	8.32	43.00	1.92	2.00	
85	African Spoonbill	Platalea alba	1	15.09	78.00	2.88	3.00	
576	African Stonechat	Saxicola torquatus	1	61.90	320.00	14.42	15.00	
208	African Swamphen	Porphyrio madagascariensis	1	18.57	96.00	2.88	3.00	
247	African Wattled Lapwing	Vanellus senegallus	1	9.86	51.00	0.00	0.00	
772	Amethyst Sunbird	Chalcomitra amethystina	1	24.37	126.00	9.62	10.00	
119	Amur Falcon	Falco amurensis		6.58	34.00	3.85	4.00	
575	Ant-eating Chat	Myrmecocichla formicivora	1	21.47	111.00	2.88	3.00	
	Arrow-marked Babbler	Turdoides jardineii	1	0.19	1.00	0.00	0.00	
514	Ashy Tit	Melaniparus cinerascens	1	4.45	23.00	1.92	2.00	
202	Baillon's Crake	Zapornia pusilla		0.19	1.00	0.00	0.00	
510	Banded Martin	Riparia cincta	1	4.06	21.00	1.92	2.00	
493	Barn Swallow	Hirundo rustica	1	29.98	155.00	12.50	13.00	
614	Barred Wren-Warbler	Calamonastes fasciolatus	1	0.58	3.00	0.00	0.00	
622	Bar-throated Apalis	Apalis thoracica	1	9.09	47.00	0.96	1.00	
	Black Cuckoo	Cuculus clamosus	1	0.39	2.00	0.00	0.00	
203	Black Crake	Zapornia flavirostra	1	32.69	169.00	1.92	2.00	
64	Black Heron	Egretta ardesiaca		6.00	31.00	1.92	2.00	
159	Black Sparrowhawk	Accipiter melanoleucus	1	4.06	21.00	1.92	2.00	
712	Black-backed Puffback	Dryoscopus cubla		0.97	5.00	0.00	0.00	
650	Black-chested Prinia	Prinia flavicans	1	89.17	461.00	22.12	23.00	
146	Black-chested Snake Eagle	Circaetus pectoralis		0.77	4.00	0.00	0.00	
431	Black-collared Barbet	Lybius torquatus	1	48.94	253.00	12.50	13.00	
69	Black-crowned Night Heron	Nycticorax nycticorax		17.41	90.00	2.88	3.00	
841	Black-faced Waxbill	Brunhilda erythronotos	1	6.00	31.00	0.96	1.00	
							1	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
55	Black-headed Heron	Ardea melanocephala	1	32.88	170.00	8.65	9.00	
245	Blacksmith Lapwing	Vanellus armatus	1	87.81	454.00	26.92	28.00	
860	Black-throated Canary	Crithagra atrogularis	1	68.47	354.00	19.23	20.00	
130	Black-winged Kite	Elanus caeruleus	1	45.26	234.00	15.38	16.00	
	Black-headed Oriole	Oriolus larvatus	1	0.19	1.00	0.00	0.00	
282	Black-winged Pratincole	Glareola nordmanni		0.58	3.00	0.96	1.00	
270	Black-winged Stilt	Himantopus himantopus	1	17.21	89.00	0.96	1.00	
839	Blue Waxbill	Uraeginthus angolensis	1	66.92	346.00	11.54	12.00	
99	Blue-billed Teal	Spatula hottentota		1.93	10.00	1.92	2.00	
405	Blue-cheeked Bee-eater	Merops persicus		0.39	2.00	0.00	0.00	
722	Bokmakierie	Telophorus zeylonus	1	13.35	69.00	3.85	4.00	
823	Bronze Mannikin	Spermestes cucullata		7.93	41.00	0.96	1.00	
145	Brown Snake Eagle	Circaetus cinereus		0.00	0.00	0.96	1.00	
443	Brown-backed Honeybird	Prodotiscus regulus	1	3.29	17.00	0.00	0.00	
714	Brown-crowned Tchagra	Tchagra australis	1	23.60	122.00	5.77	6.00	
402	Brown-hooded Kingfisher	Halcyon albiventris	1	34.24	177.00	4.81	5.00	
509	Brown-throated Martin	Riparia paludicola	1	41.97	217.00	1.92	2.00	
731	Brubru	Nilaus afer	1	4.26	22.00	0.96	1.00	
695	Buffy Pipit	Anthus vaalensis	1	3.68	19.00	0.96	1.00	
4131	Burchell's Coucal	Centropus burchellii	1	23.60	122.00	1.92	2.00	
	Burnt-necked Eremomela	Eremomela usticollis	1	0.39	2.00	0.00	0.00	
523	Cape Crow	Corvus capensis		0.39	2.00	0.00	0.00	
703	Cape Longclaw	Macronyx capensis	1	34.43	178.00	8.65	9.00	
531	Cape Penduline Tit	Anthoscopus minutus		1.16	6.00	0.00	0.00	
581	Cape Robin-Chat	Cossypha caffra	1	66.54	344.00	13.46	14.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
94	Cape Shoveler	Spatula smithii		7.93	41.00	6.73	7.00	
786	Cape Sparrow	Passer melanurus	1	85.49	442.00	16.35	17.00	
737	Cape Starling	Lamprotornis nitens	1	69.83	361.00	19.23	20.00	
98	Cape Teal	Anas capensis		1.74	9.00	0.00	0.00	
316	Ring-necked Dove	Streptopelia capicola	1	82.01	424.00	20.19	21.00	
106	Cape Vulture	Gyps coprotheres		0.58	3.00	0.96	1.00	
686	Cape Wagtail	Motacilla capensis	1	53.97	279.00	8.65	9.00	
799	Cape Weaver	Ploceus capensis		0.58	3.00	0.00	0.00	
1172	Cape White-eye	Zosterops virens	1	11.80	61.00	5.77	6.00	
568	Capped Wheatear	Oenanthe pileata	1	11.03	57.00	2.88	3.00	
450	Cardinal Woodpecker	Dendropicos fuscescens	1	12.96	67.00	2.88	3.00	
290	Caspian Tern	Hydroprogne caspia	1	4.45	23.00	0.96	1.00	
484	Chestnut-backed Sparrow- Lark	Eremopterix leucotis		1.93	10.00	0.96	1.00	
658	Chestnut-vented Warbler	Curruca subcoerulea	1	75.44	390.00	9.62	10.00	
673	Chinspot Batis	Batis molitor	1	8.51	44.00	1.92	2.00	
872	Cinnamon-breasted Bunting	Emberiza tahapisi	1	17.21	89.00	2.88	3.00	
631	Cloud Cisticola	Cisticola textrix	1	14.70	76.00	4.81	5.00	
154	Common Buzzard	Buteo buteo	1	7.93	41.00	1.92	2.00	
263	Common Greenshank	Tringa nebularia	1	3.68	19.00	0.00	0.00	
507	Common House Martin	Delichon urbicum	1	0.39	2.00	0.00	0.00	
210	Common Moorhen	Gallinula chloropus	1	58.03	300.00	5.77	6.00	
734	Common Myna	Acridotheres tristis	1	84.33	436.00	21.15	22.00	
189	Common Quail	Coturnix coturnix		0.58	3.00	0.00	0.00	
258	Common Sandpiper	Actitis hypoleucos	1	3.87	20.00	0.00	0.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
421	Common Scimitarbill	Rhinopomastus cyanomelas	1	8.90	46.00	0.96	1.00	
378	Common Swift	Apus apus	1	0.39	2.00	0.00	0.00	
843	Common Waxbill	Estrilda astrild	1	14.31	74.00	3.85	4.00	
594	Common Whitethroat	Curruca communis	1	1.93	10.00	0.00	0.00	
439	Crested Barbet	Trachyphonus vaillantii	1	80.85	418.00	13.46	14.00	
711	Crimson-breasted Shrike	Laniarius atrococcineus	1	4.26	22.00	0.96	1.00	
242	Crowned Lapwing	Vanellus coronatus	1	79.11	409.00	22.12	23.00	
821	Cut-throat Finch	Amadina fasciata		5.42	28.00	0.00	0.00	
	Dark-capped Bulbul	Pycnonotus tricolor	1	0.19	1.00	0.00	0.00	
630	Desert Cisticola	Cisticola aridulus	1	32.50	168.00	10.58	11.00	
352	Diederik Cuckoo	Chrysococcyx caprius	1	39.65	205.00	7.69	8.00	
849	Dusky Indigobird	Vidua funerea		1.74	9.00	0.00	0.00	
1183	Eastern Clapper Lark	Mirafra fasciolata	1	22.82	118.00	5.77	6.00	
89	Egyptian Goose	Alopochen aegyptiaca	1	69.25	358.00	20.19	21.00	
404	European Bee-eater	Merops apiaster	1	32.69	169.00	7.69	8.00	
132	European Honey-buzzard	Pernis apivorus		3.87	20.00	0.96	1.00	
412	European Roller	Coracias garrulus		0.58	3.00	0.96	1.00	
678	Fairy Flycatcher	Stenostira scita	1	2.90	15.00	0.96	1.00	
570	Familiar Chat	Oenanthe familiaris		17.80	92.00	0.00	0.00	
665	Fiscal Flycatcher	Melaenornis silens	1	48.74	252.00	3.85	4.00	
	Fork-tailed Drongo	Dicrurus adsimilis	1	0.19	1.00	0.00	0.00	
101	Fulvous Whistling Duck	Dendrocygna bicolor		8.12	42.00	3.85	4.00	
162	Gabar Goshawk	Micronisus gabar	1	20.70	107.00	7.69	8.00	
595	Garden Warbler	Sylvia borin		0.97	5.00	0.96	1.00	
395	Giant Kingfisher	Megaceryle maxima	1	7.93	41.00	0.96	1.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
83	Glossy Ibis	Plegadis falcinellus	1	21.66	112.00	4.81	5.00	
874	Golden-breasted Bunting	Emberiza flaviventris	1	1.16	6.00	0.00	0.00	
447	Golden-tailed Woodpecker	Campethera abingoni	1	2.90	15.00	0.96	1.00	
56	Goliath Heron	Ardea goliath		4.26	22.00	0.00	0.00	
58	Great Egret	Ardea alba		2.32	12.00	0.96	1.00	
603	Great Reed Warbler	Acrocephalus arundinaceus		6.77	35.00	0.00	0.00	
86	Greater Flamingo	Phoenicopterus roseus		0.77	4.00	0.96	1.00	
440	Greater Honeyguide	Indicator indicator	1	5.03	26.00	0.96	1.00	
122	Greater Kestrel	Falco rupicoloides		6.96	36.00	6.73	7.00	
502	Greater Striped Swallow	Cecropis cucullata	1	44.29	229.00	9.62	10.00	
419	Green Wood Hoopoe	Phoeniculus purpureus	1	29.79	154.00	10.58	11.00	
830	Green-winged Pytilia	Pytilia melba	1	12.19	63.00	3.85	4.00	
339	Grey Go-away-bird	Crinifer concolor		1.93	10.00	0.00	0.00	
54	Grey Heron	Ardea cinerea	1	27.08	140.00	8.65	9.00	
288	Grey-headed Gull	Chroicocephalus cirrocephalus	1	5.03	26.00	0.96	1.00	
557	Groundscraper Thrush	Turdus litsitsirupa	1	11.41	59.00	2.88	3.00	
84	Hadada Ibis	Bostrychia hagedash	1	85.49	442.00	25.96	27.00	
72	Hamerkop	Scopus umbretta	1	6.19	32.00	0.00	0.00	
192	Helmeted Guineafowl	Numida meleagris	1	62.86	325.00	17.31	18.00	
384	Horus Swift	Apus horus	1	1.16	6.00	0.96	1.00	
784	House Sparrow	Passer domesticus	1	64.22	332.00	12.50	13.00	
596	Icterine Warbler	Hippolais icterina		0.97	5.00	0.00	0.00	
60	Yellow-billed Egret	Ardea brachyrhyncha		3.68	19.00	1.92	2.00	
348	Jacobin Cuckoo	Clamator jacobinus	1	1.35	7.00	0.00	0.00	
835	Jameson's Firefinch	Lagonosticta rhodopareia	1	12.57	65.00	0.00	0.00	

			Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name	Scientific Name	2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
586	Kalahari Scrub Robin	Cercotrichas paena	1	38.68	200.00	6.73	7.00	
1104	Karoo Thrush	Turdus smithi	1	58.03	300.00	13.46	14.00	
237	Kittlitz's Plover	Charadrius pecuarius		2.51	13.00	0.00	0.00	
351	Klaas's Cuckoo	Chrysococcyx klaas	1	0.77	4.00	0.00	0.00	
91	Knob-billed Duck	Sarkidiornis melanotos		0.39	2.00	0.00	0.00	
114	Lanner Falcon	Falco biarmicus	1	4.84	25.00	2.88	3.00	
317	Laughing Dove	Spilopelia senegalensis	1	96.13	497.00	34.62	36.00	
706	Lesser Grey Shrike	Lanius minor	1	5.22	27.00	3.85	4.00	
442	Lesser Honeyguide	Indicator minor	1	10.44	54.00	1.92	2.00	
125	Lesser Kestrel	Falco naumanni	1	5.03	26.00	2.88	3.00	
604	Lesser Swamp Warbler	Acrocephalus gracilirostris	1	55.51	287.00	7.69	8.00	
646	Levaillant's Cisticola	Cisticola tinniens	1	63.83	330.00	10.58	11.00	
413	Lilac-breasted Roller	Coracias caudatus		0.39	2.00	0.96	1.00	
410	Little Bee-eater	Merops pusillus	1	16.05	83.00	3.85	4.00	
67	Little Bittern	Ixobrychus minutus	1	3.29	17.00	0.96	1.00	
59	Little Egret	Egretta garzetta	1	17.41	90.00	2.88	3.00	
6	Little Grebe	Tachybaptus ruficollis	1	44.29	229.00	4.81	5.00	
609	Little Rush Warbler	Bradypterus baboecala	1	25.34	131.00	3.85	4.00	
158	Little Sparrowhawk	Accipiter minullus		8.51	44.00	5.77	6.00	
253	Little Stint	Calidris minuta		8.90	46.00	0.00	0.00	
385	Little Swift	Apus affinis	1	40.23	208.00	15.38	16.00	
621	Long-billed Crombec	Sylvietta rufescens	1	4.45	23.00	1.92	2.00	
138	Long-crested Eagle	Lophaetus occipitalis		0.97	5.00	0.00	0.00	
852	Long-tailed Paradise Whydah	Vidua paradisaea	1	12.96	67.00	9.62	10.00	

			Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name	Scientific Name	2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
818	Long-tailed Widowbird	Euplectes progne	1	34.04	176.00	5.77	6.00	
397	Malachite Kingfisher	Corythornis cristatus	1	19.15	99.00	4.81	5.00	
661	Marico Flycatcher	Melaenornis mariquensis		0.58	3.00	0.00	0.00	
361	Marsh Owl	Asio capensis	1	1.74	9.00	1.92	2.00	
262	Marsh Sandpiper	Tringa stagnatilis		4.26	22.00	0.00	0.00	
607	Marsh Warbler	Acrocephalus palustris	1	2.90	15.00	0.96	1.00	
142	Martial Eagle	Polemaetus bellicosus		0.19	1.00	0.00	0.00	
456	Melodious Lark	Mirafra cheniana	1	2.51	13.00	1.92	2.00	
564	Mountain Wheatear	Myrmecocichla monticola		5.42	28.00	3.85	4.00	
318	Namaqua Dove	Oena capensis	1	20.89	108.00	11.54	12.00	
183	Natal Spurfowl	Pternistis natalensis	1	12.96	67.00	2.88	3.00	
637	Neddicky	Cisticola fulvicapilla	1	62.48	323.00	4.81	5.00	
10877	Nicholson's Pipit	Anthus nicholsoni	1	0.97	5.00	0.00	0.00	
1035	Northern Black Korhaan	Afrotis afraoides	1	44.68	231.00	16.35	17.00	
179	Orange River Francolin	Scleroptila gutturalis	1	9.09	47.00	2.88	3.00	
1171	Orange River White-eye	Zosterops pallidus	1	71.57	370.00	11.54	12.00	
838	Orange-breasted Waxbill	Amandava subflava	1	3.09	16.00	0.96	1.00	
157	Ovambo Sparrowhawk	Accipiter ovampensis	1	2.13	11.00	0.96	1.00	
165	Pale Chanting Goshawk	Melierax canorus	1	1.16	6.00	0.96	1.00	
498	Pearl-breasted Swallow	Hirundo dimidiata	1	0.77	4.00	0.96	1.00	
113	Peregrine Falcon	Falco peregrinus		5.03	26.00	0.96	1.00	
269	Pied Avocet	Recurvirostra avosetta		6.38	33.00	0.96	1.00	
522	Pied Crow	Corvus albus	1	76.98	398.00	32.69	34.00	
394	Pied Kingfisher	Ceryle rudis	1	13.73	71.00	1.92	2.00	
746	Pied Starling	Lamprotornis bicolor	1	32.11	166.00	11.54	12.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
490	Pink-billed Lark	Spizocorys conirostris		2.32	12.00	0.96	1.00	
846	Pin-tailed Whydah	Vidua macroura	1	33.85	175.00	8.65	9.00	
694	Plain-backed Pipit	Anthus leucophrys	1	3.09	16.00	1.92	2.00	
674	Pririt Batis	Batis pririt		10.64	55.00	0.00	0.00	
57	Purple Heron	Ardea purpurea	1	13.93	72.00	0.00	0.00	
850	Purple Indigobird	Vidua purpurascens		1.16	6.00	0.96	1.00	
844	Quailfinch	Ortygospiza atricollis	1	21.66	112.00	7.69	8.00	
642	Rattling Cisticola	Cisticola chiniana	1	27.66	143.00	7.69	8.00	
708	Red-backed Shrike	Lanius collurio	1	19.92	103.00	15.38	16.00	
837	Red-billed Firefinch	Lagonosticta senegala	1	36.94	191.00	8.65	9.00	
805	Red-billed Quelea	Quelea quelea	1	64.80	335.00	19.23	20.00	
97	Red-billed Teal	Anas erythrorhyncha	1	33.27	172.00	4.81	5.00	
501	Red-breasted Swallow	Cecropis semirufa	1	3.87	20.00	0.96	1.00	
488	Red-capped Lark	Calandrella cinerea	1	6.00	31.00	0.96	1.00	
343	Red-chested Cuckoo	Cuculus solitarius	1	7.93	41.00	0.00	0.00	
205	Red-chested Flufftail	Sarothrura rufa	1	2.51	13.00	0.00	0.00	
813	Red-collared Widowbird	Euplectes ardens		9.09	47.00	0.00	0.00	
314	Red-eyed Dove	Streptopelia semitorquata	1	90.52	468.00	24.04	25.00	
392	Red-faced Mousebird	Urocolius indicus	1	68.47	354.00	15.38	16.00	
820	Red-headed Finch	Amadina erythrocephala		36.75	190.00	15.38	16.00	
212	Red-knobbed Coot	Fulica cristata	1	58.22	301.00	9.62	10.00	
453	Red-throated Wryneck	Jynx ruficollis	1	1.55	8.00	1.92	2.00	
50	Reed Cormorant	Microcarbo africanus	1	63.64	329.00	16.35	17.00	
940	Rock Dove	Columba livia	1	46.42	240.00	10.58	11.00	
123	Rock Kestrel	Falco rupicolus		1.74	9.00	0.96	1.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
506	Rock Martin	Ptyonoprogne fuligula		1.74	9.00	0.00	0.00	
256	Ruff	Calidris pugnax	1	7.16	37.00	2.88	3.00	
372	Rufous-cheeked Nightjar	Caprimulgus rufigena	1	0.19	1.00	0.96	1.00	
458	Rufous-naped Lark	Mirafra africana	1	50.87	263.00	16.35	17.00	
460	Sabota Lark	Calendulauda sabota	1	8.70	45.00	3.85	4.00	
789	Scaly-feathered Weaver	Sporopipes squamifrons	1	38.30	198.00	12.50	13.00	
105	Secretarybird	Sagittarius serpentarius		0.19	1.00	0.00	0.00	
608	Sedge Warbler	Acrocephalus schoenobaenus	1	1.16	6.00	0.00	0.00	
847	Shaft-tailed Whydah	Vidua regia		6.00	31.00	0.96	1.00	
504	South African Cliff Swallow	Petrochelidon spilodera	1	25.34	131.00	11.54	12.00	
90	South African Shelduck	Tadorna cana	1	31.72	164.00	13.46	14.00	
707	Southern Fiscal	Lanius collaris	1	59.19	306.00	22.12	23.00	
4142	Southern Grey-headed Sparrow	Passer diffusus	1	67.89	351.00	17.31	18.00	
803	Southern Masked Weaver	Ploceus velatus	1	97.68	505.00	31.73	33.00	
102	Southern Pochard	Netta erythrophthalma		2.90	15.00	1.92	2.00	
808	Southern Red Bishop	Euplectes orix	1	83.17	430.00	27.88	29.00	
390	Speckled Mousebird	Colius striatus	1	38.10	197.00	12.50	13.00	
311	Speckled Pigeon	Columba guinea	1	82.40	426.00	22.12	23.00	
474	Spike-heeled Lark	Chersomanes albofasciata	1	4.06	21.00	5.77	6.00	
368	Spotted Eagle-Owl	Bubo africanus	1	2.32	12.00	0.96	1.00	
654	Spotted Flycatcher	Muscicapa striata	1	12.19	63.00	0.96	1.00	
275	Spotted Thick-knee	Burhinus capensis	1	10.64	55.00	2.88	3.00	
88	Spur-winged Goose	Plectropterus gambensis	1	30.95	160.00	9.62	10.00	
62	Squacco Heron	Ardeola ralloides		10.44	54.00	0.96	1.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
867	Streaky-headed Seedeater	Crithagra gularis		0.77	4.00	0.00	0.00	
63	Striated Heron	Butorides striata	1	10.44	54.00	2.88	3.00	
185	Swainson's Spurfowl	Pternistis swainsonii	1	52.22	270.00	8.65	9.00	
411	Swallow-tailed Bee-eater	Merops hirundineus	1	1.16	6.00	0.00	0.00	
649	Tawny-flanked Prinia	Prinia subflava	1	12.19	63.00	0.96	1.00	
277	Temminck's Courser	Cursorius temminckii		0.19	1.00	0.00	0.00	
804	Thick-billed Weaver	Amblyospiza albifrons		29.21	151.00	4.81	5.00	
	Tinkling Cisticola	Cisticola rufilatus	1	0.19	1.00	0.00	0.00	
238	Three-banded Plover	Charadrius tricollaris	1	32.30	167.00	2.88	3.00	
851	Village Indigobird	Vidua chalybeata	1	16.63	86.00	1.92	2.00	
797	Village Weaver	Ploceus cucullatus	1	0.19	1.00	0.96	1.00	
736	Violet-backed Starling	Cinnyricinclus leucogaster	1	0.58	3.00	0.96	1.00	
840	Violet-eared Waxbill	Granatina granatina	1	4.45	23.00	3.85	4.00	
639	Wailing Cisticola	Cisticola lais		0.39	2.00	0.00	0.00	
735	Wattled Starling	Creatophora cinerea	1	42.94	222.00	11.54	12.00	
359	Western Barn Owl	Tyto alba	1	3.48	18.00	0.96	1.00	
61	Western Cattle Egret	Bubulcus ibis	1	73.69	381.00	32.69	34.00	
305	Whiskered Tern	Chlidonias hybrida	1	5.22	27.00	1.92	2.00	
80	White Stork	Ciconia ciconia		0.77	4.00	0.96	1.00	
391	White-backed Mousebird	Colius colius	1	26.50	137.00	1.92	2.00	
107	White-backed Vulture	Gyps africanus		0.58	3.00	0.96	1.00	
763	White-bellied Sunbird	Cinnyris talatala	1	25.92	134.00	5.77	6.00	
47	White-breasted Cormorant	Phalacrocorax lucidus	1	20.89	108.00	5.77	6.00	
780	White-browed Sparrow- Weaver	Plocepasser mahali	1	84.33	436.00	24.04	25.00	

		Scientific Name	Observed (Aug. Nov	SABAP2 Reporting Rates				
#	Common Name		2023 & Jan 2024)	Full Protocol (%)	Number of cards	Ad hoc Protocol (%)	Number of cards	
588	White-browed Scrub Robin	Cercotrichas leucophrys	1	1.35	7.00	0.96	1.00	
100	White-faced Whistling Duck	Dendrocygna viduata	1	31.91	165.00	6.73	7.00	
409	White-fronted Bee-eater	Merops bullockoides		26.31	136.00	9.62	10.00	
383	White-rumped Swift	Apus caffer	1	23.02	119.00	5.77	6.00	
582	White-throated Robin-Chat	Cossypha humeralis	1	2.71	14.00	0.00	0.00	
495	White-throated Swallow	Hirundo albigularis	1	33.08	171.00	4.81	5.00	
304	White-winged Tern	Chlidonias leucopterus		1.93	10.00	0.00	0.00	
814	White-winged Widowbird	Euplectes albonotatus	1	13.15	68.00	2.88	3.00	
599	Willow Warbler	Phylloscopus trochilus	1	8.70	45.00	1.92	2.00	
634	Wing-snapping Cisticola	Cisticola ayresii		2.71	14.00	0.96	1.00	
264	Wood Sandpiper	Tringa glareola	1	12.38	64.00	3.85	4.00	
866	Yellow Canary	Crithagra flaviventris	1	33.85	175.00	5.77	6.00	
96	Yellow-billed Duck	Anas undulata	1	66.92	346.00	17.31	18.00	
	Yellow-fronted Tinkerbird	Pogoniulus chrysoconus	1	0.19	1.00	0.96	1.00	
129	Yellow-billed Kite	Milvus aegyptius		0.97	5.00	0.96	1.00	
76	Yellow-billed Stork	Mycteria ibis		0.77	4.00	0.00	0.00	
812	Yellow-crowned Bishop	Euplectes afer	1	15.86	82.00	1.92	2.00	
859	Yellow-fronted Canary	Crithagra mozambica		1.55	8.00	0.00	0.00	
788	Yellow-throated Bush Sparrow	Gymnoris superciliaris	1	3.29	17.00	0.00	0.00	
629	Zitting Cisticola	Cisticola juncidis	1	21.28	110.00	17.31	18.00	

Appendix 2: Preliminary density estimates of passerine birds recorded from the study site and immediate surroundings during August/September
2023 and November/December 2023.

Species	kar01	kar03	kar04	kar05	kar06	kar07	kar08	kar09	kar10	kar11	kar12	kar13	kar33	kar14	kar15	kar16	kar17	kar18	kar19	kar20
African Paradise Flycatcher	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
African Pipit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.5
African Red-eyed Bulbul	1.5	2	2	2	0	2	1.5	2	1.5	2	0	2	2	0	2	1	1	2	0	0
African Stonechat	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
Ashy Tit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barred Wren-warbler	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Bar-throated Apalis	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black-chested Prinia	2	2	3	2	0	2	2	2	2	2	1.5	2	2	0	2	2	0	2	2	0
Black-faced Waxbill	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
Blue Waxbill	0	2	0	0	0	0	2	4	0	2	0	0	0	0	0	0	0	0	0	0
Bokmakierie	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brown-crowned Tchagra	0	1	2	2	0	2	2	1	1	2	0	0	1	0	0	0	0	0	0	0
Buffy Pipit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Cape Longclaw	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cape Robin-chat	1.5	0	1.5	2	0	0	0	0	0	0	0	1	1.5	0	0	0	0	0	0	0
Cape White-eye	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chestnut-vented Warbler	2	2	2	3	0	4	3	3	2	2	2	2	2	0	2	1	0	2	0	0
Chinspot Batis	0	0	0	0	0	2	2	2	0	0	0	2	0	0	0	0	0	0	0	0
Cloud Cisticola	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Desert Cisticola	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	0	2	0
Fairy Flycatcher	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0
Fiscal Flycatcher	0	1	0	0	0	0	0	1.5	2	2	0	2	1	0	0	0	0	0	0	0
Green-winged Pytilia	0	4	0	0	0	2	2	2	2	2	0	2	0	0	0	0	0	0	0	0

Species	kar01	kar03	kar04	kar05	kar06	kar07	kar08	kar09	kar10	kar11	kar12	kar13	kar33	kar14	kar15	kar16	kar17	kar18	kar19	kar20
Groundscraper Thrush	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Jameson's Firefinch	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Kalahari Scrub-robin	0	0	0	1	0	1	2	1	1	1	0	1	0	0	0	0	0	0	0	0
Karoo Thrush	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Lesser Grey Shrike	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Long-billed Crombec	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0
Melodious Lark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Neddicky	0	1	2	1	0	2	1	1.5	1	1	0	1	1	0	0	1	1	1	0	0
Nicholson's Pipit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1.5	0	0
Orange River White-eye	3	0	2	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0
Pin-tailed Whydah	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Plain-backed Pipit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Quailfinch	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
Rattling Cisticola	2	2	2	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Red-backed Shrike	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
Red-billed Quelea	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red-capped Lark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	4
Rufous-naped Lark	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0
Sabota Lark	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Southern Fiscal	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2
Southern Grey-headed Sparrow	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Southern Masked Weaver	2	9	2	2	3	5	2	2	2	4	0	2	2	0	0	0	0	1	0	1
Spotted Flycatcher	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0
Tawny-flanked Prinia	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Violet-backed Starling	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
White-bellied Sunbird	1	0	0	0	0	1.5	0	1	1	1.5	0	1	0	0	1	0	0	2	0	0

Species	kar01	kar03	kar04	kar05	kar06	kar07	kar08	kar09	kar10	kar11	kar12	kar13	kar33	kar14	kar15	kar16	kar17	kar18	kar19	kar20
White-browed Scrub-robin	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
White-browed Sparrow-weaver	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
White-throated Robin-chat	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
White-winged Widowbird	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Willow Warbler	0	1	0	1	0	2	1	1	1	1	0	1	1	0	0	0	0	0	0	0
Yellow Canary	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zitting Cisticola	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of individuals	23	31	21.5	27	7	33.5	21.5	36	16.5	36.5	5.5	21	17.5	7	10	7	6	12.5	6	14.5
Number of species	14	14	11	14	4	17	12	22	11	21	4	14	12	6	6	6	5	8	4	7
Number of birds/ha	29.49	39.74	27.56	34.62	8.97	42.95	27.56	46.15	21.15	46.79	7.05	26.92	22.44	8.97	12.82	8.97	7.69	16.03	7.69	18.59
Number of species/ha	17.95	17.95	14.10	17.95	5.13	21.79	15.38	28.21	14.10	26.92	5.13	17.95	15.38	7.69	7.69	7.69	6.41	10.26	5.13	8.97
Density																				
Average number of birds/ha	21.94																			
Average number of species/ha	12.82																			

Species	kar21	kar22	kar23	kar24	kar25	kar26	kar27	kar28	kar29	kar30	kar31	kar32	kar34	kar35	kar36	kar37	Mean Bird/ha
African Paradise Flycatcher	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0.071
African Pipit	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.160
African Red-eyed Bulbul	3	0	1	0	0	1	2	1	2	1.5	1.5	4	3	1	1	3	1.834
African Stonechat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Ashy Tit	0	0	0	0	0	2	0	0	0	2	2	0	2	0	0	2	0.356
Barred Wren-warbler	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.107
Bar-throated Apalis	0	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0	0.285
Black-chested Prinia	2	0	0	0	1	2	2	2	2	2	2	2	3	2	2	3	2.119
Black-faced Waxbill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.107
Blue Waxbill	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0.427
Bokmakierie	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Brown-crowned Tchagra	0	0	0	0	0	2	1	0	2	0	0	2	0	0	0	2	0.819
Buffy Pipit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Cape Longclaw	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.214
Cape Robin-chat	0	0	0	0	0	2	2	2	2	2	0	0	1	0	0	2	0.730
Cape White-eye	0	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0.142
Chestnut-vented Warbler	0	1	0	0	0	2	3	2	0	0	2	2	3	2	1.5	2	1.941
Chinspot Batis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.356
Cloud Cisticola	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.107
Desert Cisticola	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0.427
Fairy Flycatcher	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.214
Fiscal Flycatcher	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0.374
Green-winged Pytilia	2	0	0	0	0	2	2	0	0	0	0	0	2	0	0	2	0.926
Groundscraper Thrush	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Jameson's Firefinch	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0.214

Species	kar21	kar22	kar23	kar24	kar25	kar26	kar27	kar28	kar29	kar30	kar31	kar32	kar34	kar35	kar36	kar37	Mean Bird/ha
Kalahari Scrub-robin	0	0	0	0	0	0	1	0	0	0	0	0	1.5	0	0	1	0.410
Karoo Thrush	0	0	0	0	0	0	0	1	1	2	0	0	0	0	0	0	0.214
Lesser Grey Shrike	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.036
Long-billed Crombec	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.214
Melodious Lark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.036
Neddicky	0	0	0	0	0	0	1	0	0	0	0	1.5	1	1	1	0	0.748
Nicholson's Pipit	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.125
Orange River White-eye	0	0	0	0	0	2	0	2	4	4	0	0	2	0	0	0	0.819
Pin-tailed Whydah	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0.071
Plain-backed Pipit	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.036
Quialfinch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Rattling Cisticola	0	0	0	0	0	0	0	0	0	0	1	2	0	2	0	0	0.499
Red-backed Shrike	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Red-billed Quelea	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0.499
Red-capped Lark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.214
Rufous-naped Lark	1	0	1	0	0	0	0	0	0	0	2	1	0	0	0	0	0.285
Sabota Lark	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0.249
Southern Fiscal	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.285
Southern Grey-headed Sparrow	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0.285
Southern Masked Weaver	1	0	0	0	0	2	2	1	2	2	3	3	1	0	0	2	2.066
Spotted Flycatcher	0	0	0	0	0	2	1	0	0	0	0	1	1	0	0	0	0.392
Tawny-flanked Prinia	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0.142
Violet-backed Starling	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.036
White-bellied Sunbird	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.356
White-browed Scrub-robin	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0.107
White-browed Sparrow-weaver	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071

Species	kar21	kar22	kar23	kar24	kar25	kar26	kar27	kar28	kar29	kar30	kar31	kar32	kar34	kar35	kar36	kar37	Mean Bird/ha
White-throated Robin-chat	0	0	0	0	0	1	1	0	1	1	0	0	0	1	0	1	0.321
White-winged Widowbird	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.071
Willow Warbler	0	0	0	0	0	2	1	2	1	1	2	1	1	0	0	2	0.819
Yellow Canary	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0.107
Zitting Cisticola	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.071
Number of individuals	15	5	7	1	3	26	22	18	19	19.5	15.5	30.5	26.5	13	5.5	29	
Number of species	10	4	6	1	3	15	14	11	10	10	8	13	15	9	4	15	
Number of birds/ha	19.23	6.41	8.97	1.28	3.85	33.33	28.21	23.08	24.36	25.00	19.87	39.10	33.97	16.67	7.05	37.18	
Number of species/ha	12.82	5.13	7.69	1.28	3.85	19.23	17.95	14.10	12.82	12.82	10.26	16.67	19.23	11.54	5.13	19.23	
Density																	
Average number of birds/ha	21.94																
Average number of species/ha	12.82																