ANIMAL SPECIES SPECIALIST ASSESSMENT REPORT FOR THE PROPOSED RESIDENTIAL DEVELOPMENT ON THE REMAINDER OF ERF 2833, GREAT BRAK RIVER, MOSSEL BAY

Prepared by Mr Willem Matthee (Nelson Mandela University George Campus)

And

Prof. Jan A. Venter (Nelson Mandela University George Campus)

> Prepared for: NewCare Innovations (Pty) Ltd P.O. Box 4984 George East Western Cape 6539

> > 14 February 2024

DECLARATION OF SPECIALIST INDEPENDENCE

We, Mr Willem Matthee and Prof. Jan A. Venter, hereby declare that:

- we are acting as independent specialists regarding this application;
- we do not have any interest, hidden or otherwise, in the outcome of this application, apart from financial compensation for the work done to survey the proposed development area and compile this report;
- surveying the site for this faunal compliance statement was done objectively, and that this report and the facts therein contained (regardless of its impact on the application approval process) will not be affected by any outside factors;
- we have the required expertise to perform surveys and produce compliance statements as it pertains to the faunal aspect of this proposed development
- we will comply with the relevant Acts, regulations and legislation;
- we have not, and will not, engage in conflicting interests while performing our duties for this activity, and have no influence over the decision-making authorities regarding their accepting or rejecting of this proposed development;
- we undertake to disclose to the applicant and competent authority all material and information within my possession that may influence the decision-making process regarding the proposed development;
- all particulars furnished by us in this form are true and correct, and that it is an offense to present a false declaration, and that such a false declaration is punishable in terms of Section 24F of the Act; and that
- this document is to be viewed as a whole, and not misquoted out of context.

Date: 14 February 2024

Matthee

Date: 14 February 2024

DATE	REVISION	STATUS	PREPARED BY	CHECKED AND
				APPROVED BY
14 FEBRUARY 2024	0	Approved	Willem Matthee	Prof. Jan A.
		for		Venter
		submission		(SACNASP
				Registration Nr.
				400111/14)
			Matthee	- Aw

TABLE OF CONTENTS

1.	INT	ROD	DUCTION	. 3
2.	DET	AILS	OF THE SPECIALISTS	.6
3.	SIT	E DE	SCRIPTION	.7
	3.1.	Loc	ation and vegetation	.7
	3.2.	Dev	elopment layout	.7
4.	ME	тно	DOLOGY	10
4	4.1.	Des	sktop Assessment	10
4	4.2.	Site	visits	16
	4.2	.1.	Vegetation	16
	4.2	.2.	Animal species surveys	17
5.	FIN	IDING	GS AND EVIDENCE	19
Ę	5.1.	Ter	restrial animal species sensitivity	19
Ę	5.2.	Dev	elopment impacts on SCC	20
	5.2	.1.	Impacts during the construction phase	20
	5.2	.2.	Impacts during the operational phase	35
Ę	5.3.	Cor	nparison of the three alternatives	50
Ę	5.4. S	Site s	ensitivity verification	50
6.	RE	сом	MENDATIONS	55
RE	FER	ENC	ES	57

1. INTRODUCTION

Cape EAPrac (Pty) Ltd was appointed to facilitate aspects regarding the environmental impacts of a proposed development on the Remainder of Erf 2833, Great Brak River, Mossel Bay (S34.054400°; E22.202961°). As per the "Protocols for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes (hereafter called "the Protocols"), as promulgated in Government Notice 320 (Government Gazette 43110, 20 March 2020), the Protocols must be adhered to for all new applications for Environmental Authorisation.

As per the Protocols, an animal species specialist report must:

- a) identify the SCC which were found, observed or are likely to occur within the study area;
- b) provide evidence (photographs or sound recordings) of each SCC found or observed within the study area;
- c) identify the distribution, location, viability and provide a detailed description of the population size of the SCC identified within the study area;
- d) identify the nature and extent of the potential impact of the development on the population of the SCC located within the study area;
- e) determine the importance of the conservation of the population of the SCC identified within the study area, based on the information available in national and international databases;
- f) determine the potential impact of the proposed development on the habitat of the SCC located within the study area;
- g) include a literature review of the SCC population sizes, the conservation interventions, and any national or provincial management plans for the SCC. This should also indicate whether the development is compliant with the applicable species management plans;
- h) identify dynamic ecological processes (e.g. fire in fire-prone ecosystems) occurring within the broader landscape that might be disrupted by the development and result in negative impacts on the identified SCC;
- i) identify any potential impact of ecological connectivity in relation to the broader landscape, resulting in impacts on the identified SCC and its long-term viability;

- j) determine buffer distances as per the Species Environmental Assessment Guidelines used for the population of each SCC;
- k) discuss the presence (or likely occurrence) of additional SCC not identified by the screening tool, as well as undescribed species, or roosting and breeding and foraging areas used by migratory species (where these species show significant congregations) occurring in the vicinity; and
- identify any alternative development footprints within the preferred site that would be of "low" or "medium" sensitivity as identified by the screening tool and verified through site sensitivity verification.
- m) A signed copy of the assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

The Department of Forestry, Fisheries and the Environment (DFFE) screening tool (performed on 1 March 2023) identified the property as having a **High** sensitivity in terms of the animal species theme (Fig. 1). This is due to the potential occurrence of six species of conservation concern (SCC) at the study site (Table 3), or the development potentially impacting these six species. As a result, the development requires an animal species specialist assessment report, as per the Protocols. This specialist report will, based on the desktop assessment and site visits, identify the areas at the study area where SCC are most likely to occur, the potential impacts on the SCC, and mitigation measures to be included in the development to reduce the negative impacts and enhance potential positive impacts on the SCC.

The first site visit (performed on 26 March 2023) and associated site sensitivity verification report (SSVR) initially recorded the site as a site with medium sensitivity, but upgraded it to a high sensitivity, to align with the DFFE screening tool report. During the site visit for the SSVR, one Knysna warbler (*Bradypterus sylvaticus*) was heard in a neighbouring property, indicating the presence of that species in the area (albeit not in the study site during that visit). None of the other SCC were recorded during that site visit, though that site visit was not performed during the flight period of the two butterfly SCC (*Lepidochrysops littoralis* and *Aloeides thyra orientis*), and a second site visit was required. For this animal species specialist report, the second site visit was performed on 1 November 2023. During that site visit, an emphasis was placed on determining the presence of any SCC at the study site, determine population

sizes (if applicable), and determine the impacts of the proposed development on the SCC and other animal species at the study site and surrounding area, as prescribed by the Protocols.

This animal species specialist report is based on the data collected during the desktop study (using Cape Farm Mapper, Google Earth, iNaturalist, BGIS and GBIF) and site visit for the SSVR, as well as the data collected during the site visit of 1 November 2023.

Fig. 1: The site sensitivity of the terrestrial animal species theme, as per the DFFE screening tool (performed 1 March 2023).

2. DETAILS OF THE SPECIALISTS

Both specialists that compiled this document have experience in faunal species identification, and the identification of suitable habitats for various species, from invertebrates to large mammalian species. Their details are in the table below.

Specialist and contact	Qualifications	SACNASP	Experience
details		Registration	
Prof. Jan A Venter	PhD(Biology)	400111/14	25 Years' experience in faunal
Email:	UKZN		ecology and conservation in both
JanVenter@mandela.ac.za			the government and tertiary
Mobile: 0824161096			education sector. Current
			position: Associate Professor in
			the Department of Conservation
			Management at Nelson Mandela
			University
Willem Matthee	M.Sc. (Nature	Not registered	Willem has three years'
Email:	Conservation)		experience in surveying
WillemM@mandela.ac.za	NMU		amphibian populations, and an
Mobile: 084 620 4246			additional five years of bird
			surveys. He has also been
			involved in animal diversity
			surveys on an on-off basis for the
			past four years. He has completed
			his MSc in Nature Conservation in
			2014, and is in the process of
			completing his PhD in Nature
			Conservation. He currently
			lectures as a lecturer in
			Conservation Ecology at the
			Nelson Mandela University
			George Campus.

Table 1. The details and experience of the specialists involved with this report.

3. SITE DESCRIPTION

3.1. Location and vegetation

The site of the proposed development is the Remainder of Erf 2833, Great Brak River, Mossel Bay. The property has an estimated size of 60 270.5 m², and is located in Hartenbos Dune Thicket (previously classified as Groot Brak Dune Strandveld, which is classified as Endangered; Mucina & Rutherford, 2006). According to aerial imagery (from Google Earth - Appendix 1), clearing of vegetation (namely exotic *Acacia* trees) started between May 2021 and November 2021, with it continuing to the present (Appendix 1). The southern section of the study site is dominated by grasses (including exotic Kikuyu, *Cenchrus clandestinus*) and short shrubs, while the northern section is dominated by shrubs (including *Searsia glauca*, *Osteospermum moniliferum*, *Acokanthera oppositifolia*, *Grewia occidentalis* and *Gymnosporia buxifolia*). From the northeastern corner to the southwestern corner, a drainage line is present, which is dominated by thicket vegetation (indigenous and exotic vegetation, including *Acacia mearnsii*).

3.2. Development layout

The proposed development will be a residential development, with a large proportion of the study area remaining as green space, preferably of naturally-occurring vegetation.

		Non-mitiga	ted alternative SDP	Preferred alternative SDP	
Zone	Zonation	Area (ha)	% of total property	Area	% of total property
colour				(ha)	
	Single residential	1.44	23.84	0.32	5.30
	zone l				
	General residential	0.83	13.74	0.86	14.24
	zone l				
	Open space II	2.28	37.75	3.56	58.94
	Transport zone III	1.14	18.87	0.95	15.73
	(private road)				
	Transport zone II	0.35	5.79	0.35	5.79
	(public road)				
TOTAL		6.04	100	6.04	100

Table 2: The size of each zonation category illustrated in the two SDPs (Fig^s 2 & 3).

Fig. 2: The non-mitigated alternative SDP, with development focussed in three clusters, and the drainage line as a green space bisecting the development.

Fig. 3: The preferred alternative SDP, with infrastructure concentrated in two clusters, and the majority of the property as green space.

4. METHODOLOGY

4.1. Desktop Assessment

The desktop analysis consisted of Cape Farm Mapper to determine vegetation types at the study site, and the use of the Global Biodiversity Information Framework (GBIF) and iNaturalist for the confirmation of records of species of conservation concern (SCC) near the study area. References regarding the conservation statuses of SCC consisted of the IUCN Red List of Threatened Species, Taylor et al. (2015) for birds, Child et al. (2016) for mammals, and Mecenero et al. (2013) for butterflies.

Circus ranivorus occurs in areas where large freshwater ecosystems are present, and in the adjacent open grassland vegetation (Simmons, 2005). Although the Great Brak River estuary system is relatively close (1.5 km from the site), the vegetation at the site is too dense to support this bird species, and it is unlikely that it will be impacted by this development.

Bradypterus sylvaticus prefers thickets of indigenous species, where a dense understorey is present, including in thickets of exotic bramble (*Rubus* sp.) and *Lantana camara* (Smith, 2005). They often occur watercourses, such as the one present at the site. Though there are no records on iNaturalist of this species in the area, I have observed them frequently in white milkwood (*Sideroxylon inerme*) thickets along the coast at Tergniet (approximately 1.5 km from the site), and there is therefore a high chance of it occurring at the site, if the vegetation along the seasonal stream at the site is suitable.

The chance of either (or both) butterfly species (*Lepidochrysops littoralis* and *Aloeides thyra orientis*) occurring at the site is dependent on the presence of larval host plants at the site. Due to the potential presence of larval food plants (*Selago* spp. for *L. littoralis*) at the site, there is a low chance (rather than very low chance) of *L. littoralis* occurring at the site. *A. thyra orientis* is mostly known from the area around Knysna and Rheenendal, with an isolated record (August 2022) from the mountains north of Friemersheim (about 17km from the site). There is also an isolated population around Still Bay to the west (approximately 80 km from the study site). *L. littoralis* is known mostly from the Agulhas Plains to the west, with the closest observations (most

recently from November 1989) being from the Robinson Pass (approximately 18 km from the site).

Sensitive Species 8 (which cannot be disclosed) prefers dense indigenous forests and thickets, and usually move away from areas with high levels of disturbance (Venter et al., 2016). Though there is an isolated record of this species from the Great Brak River area (January 2019), this record is outside the normal distribution range of this species, and it was photographed in a patch of dense indigenous vegetation. If the vegetation at the site consisted only of indigenous tree species, there would have been a greater chance of this species occurring here. However, since the vegetation at the study site has a high occurrence of exotic plants, there is a low chance of this species occurring at the site.

Aneuryphymus montanus is known from more rocky environments, usually in more arid environments with hard-leaved fynbos vegetation (Brown, 1960), with the closest observation being from the Swartberg Pass (1961). The habitat at the site is therefore probably not suitable, and the chance of it occurring here is very low.

Table 3: The six species of conservation concern (SCC) identified by the DFFE screening tool, and each species' conservation assessment, habitat requirements and likelihood of occurrence at the study site, based on the site sensitivity verification report, desktop assessment and the site visit on 1 November 2023.

Common	Threat Status		Habitat	Likelihood of
name	International	National	requirements	occurrence
African marsh-	Least	Endangered	Estuaries and large	Very low
harrier	Concern		wetlands with	There is no suitable
Circus	Decreasing	Decreasing	sufficient reedbeds	habitat of sufficient size
ranivorus		(<2 500 adult	for food and breeding	at the study site to
		individuals)		support this species.
Knysna warbler	Vulnerable	Vulnerable	Forest edges,	High
Bradypterus	Decreasing	Decreasing	riparian thickets and	The drainage line
sylvaticus		(<2 500 adult	coastal thickets	provides suitable
		individuals)	where Sideroxylon	habitat; one individual
			<i>inerme</i> is present.	was heard calling during
			Also utilises thickets	the site visit for the site
			dominated by lantana	sensitivity verification
			and bramble.	report.
Brenton copper	Not assessed	Endangered	Knysna sand fynbos,	Low
Aloeides thyra		Decreasing	likely in close	This subspecies is
orientis		(Area of	association with	known only from
		occupancy	Lepisiota capensis	Brenton-on-Sea near
		<10 km²); no	ants.	Knysna, two populations
		population		near Still Bay, and one
		estimate.		isolated record from
				Friemersheim.
Coastal blue	Endangered	Endangered	Rocky limestone	Low
butterfly		Decreasing	ridges or sand dunes	Not known from
Lepidochrysops		(Known from	in coastal fynbos.	localities east of Mossel
littoralis		10 locations		Bay; habitat likely not
		between		suitable, and not in a
		Bredasdorp		limestone-rich area.
		and Mossel		
		Bay; no		
		population		
		estimate).		

Common	Threat Status		Habitat	Likelihood of
name	International	National	requirements	occurrence
Sensitive	Least	Vulnerable	Forests and dense	Low
Species 8	Concern		woodlands, including	The study area is
(which cannot		Declining	coastal forests and	surrounded by
be disclosed)		(3 500 –	thickets where	developments and alien
		50 000 mature	sufficient canopy	invasive thickets, which
		individuals	cover and a dense	is not preferred habitat.
		estimated	understorey is	Very few records from
			present.	the Southern Cape, with
				the exception of forests
				east of George.
Yellow-winged	Vulnerable	Vulnerable	Dry, sclerophyllous	Very low
agile		Likely	fynbos in rocky	Not known from the
grasshopper		declining	foothills.	area, and no suitable
Aneuryphymus		No population		habitat present at the
montanus		estimates,		study site.
		and rarely		
		collected.		

Fig. 4: The layout of the site, with main site characteristics labelled. Labels A-D correspond with labels given in Figures 5 and 5.

Fig. 5: Looking east from the western boundary of RE2833, an area dominated by *A. mearnsii* has been cleared. In the background, (A) the area cleared of *A. cyclops*, and (B) the seasonal stream vegetation are visible.

Fig. 6: Looking south onto RE2833, from the adjacent property, with (A) the cleared *A. cyclops*, (B) the seasonal stream vegetation, and (C) the mostly-indigenous shrubland and thicket labelled.

Fig. 7: The grass-dominated vegetation in the south of the property (labelled D in Fig. 4), with cleared *Acacia mearnsii* and *A. cyclops* in the foreground.

4.2. Site visits

4.2.1. Vegetation

The site visits, performed on 26 March 2023 and 1 November 2023, confirmed that the majority of the thickets at the site were dominated by exotic Acacia species, namely black wattle (A. mearnsii) and rooikrans (A. cyclops). The stream that is present at the site has some indigenous vegetation present, but also has a high density of exotic trees, especially towards the southwest of the site. Towards the south of the site, the vegetation is open, and dominated by grasses such as buffalo grass (Stenotaphrum secundatum) and kikuyu (Cenchrus clandestinum). A section of exotic black wattle trees along the western stretch of the property have been cleared between November 2022 and the first site visit (Fig. 5 & Fig. 7), while a section of rooikrans has also been cleared along the eastern section of the site during the same time period. Indigenous plant species recorded at the site consisted mainly of thicket species, such as crossberry (Grewia occidentalis), false olive (Buddleja saligna), glossy currant (Searsia lucida), cat-thorn (Scutia myrtina), red currant (Searsia chirindensis) and common spike-thorn (Gymnosporia buxifolia). Smaller indigenous plant species recorded included Cape buckhorn (Cynanchum africanum), channelled heath (Erica canaliculata), and stiff bitterbush (Selago corymbosa). The occurrence of Selago corymbosa is of significance, as it is a potential larval host plant of the coastal blue butterfly, L. littoralis (Edge, 2021). The occurrence of this plant species could therefore indicate the potential presence of that butterfly at the site as well.

Exotic species (apart from the previously-mentioned *A. cyclops* and *A. mearnsii*) recorded at the site included bramble (*Rubus* sp.), Cape gooseberry (*Physalis peruviana*), black nightshade (*Solanum nigrum*), and lantana (*Lantana camara*). These species (apart from the two *Acacia* species) occur at relatively low densities at the site. There is also some Spanish reed (*Arundo donax*) present along the seasonal stream, towards the southwestern extent thereof.

An important characteristic of the property, is the presence of a seemingly seasonal stream that bisects the property. In the higher-lying section of this stream, vegetation is characterised by the presence of false olive (*Buddleja saligna*) and other indigenous thicket and forest species, but it is dominated by *Acacia mearnsii* in the lower-lying sections. This seasonal stream is likely an important ecological corridor, and would function more so if the exotic trees are removed, and locally indigenous vegetation allowed to establish.

4.2.2. Animal species surveys

During both site visits, an effort was made to cover the entire property. Site visits consisted of the surveyors walking on the property, with a focus on areas where (a) SCC are likely to occur; and (b) areas where development was most likely to occur according to the two SDPs (Figures 2 & 3). Records were based on visual observations (either seeing an animal clearly, or observing clearly-identifiable tracks or dung), or acoustic observations (where bird calls were identifiable). B. sylvaticus is an elusive species that is not easily observed unless it is calling, but responds well to call playbacks. For this species, we used call playbacks to attempt to elicit a response from any individuals in suitable habitat: these call playbacks consisted of playing a one-minute call of the species twice (15 minutes apart) in (or adjacent to) suitable habitats, and waiting for either acoustic or visual confirmation of this species' presence. Regardless of whether a response was received, we then proceeded to the next area with suitable habitat, and performed the call playback again. The route used to survey the property is recorded in Figure 8. Due to the difficult terrain of the dense thicket that bisects the property, the northeastern section of the property could not be traversed. However, the call playbacks of *B. sylvaticus* were used on the border of suitable habitat, and thickets were surveyed where possible (to determine the potential presence of Sensitive Species 8 at the study site).

During the site visits, all the animal species observed were recorded (Appendix 2), as well as important plant species observed on the property (especially those that may be important habitats or food sources for SCC, or form an important component of the vegetation present at the site).

17

Fig. 8: The path followed during the site visit on 1 November 2023. During the site visit, the areas previously classified as low, medium and high sensitivity were surveyed.

5. FINDINGS AND EVIDENCE

5.1. Terrestrial animal species sensitivity

During the two site visits, no signs were found of A. montanus, Sensitive Species 8, L. littoralis, A. thyra orientis, or C. ranivorus. Additionally, the environment does not support the arid, mountainous scrubland required by A. montanus. No observations of the larval food plants of A. thyra orientis (Fabaceous plants in the Aspalathus Genus, and possibly *Indigofera erecta*) were made at the site during either of the two site visits, and it is unlikely that this species occurs at the study site. Though the presence of Selago corymbosa could indicate the presence of *L. littoralis* at the site, this butterfly species prefers limestone-rich outcrops (Edge, 2021), which is not present at the site. The seasonal stream that bisects the property could host Sensitive Species 8, though it is unlikely, due to the high rates of invasion by A. cyclops and A. mearnsii along the stream and surrounding vegetation, and the level of disturbance associated with the neighbouring properties. It is also highly unlikely that C. ranivorus would utilise this site, as (with the exception of the grassy habitat to the south of the site) the vegetation is too dense and tall to be suitable habitat for that species. Additionally, the grassy section of the property is too small (and too far from the nearest large wetland or estuary) for it to be suitable *C. ranivorus* habitat.

During the first site visit (on 26 March 2023), a Knysna warbler, *Bradypterus sylvaticus* was heard calling on an adjacent property, and it is very likely that this species moves through the vegetation along the seasonal stream and makes use of the surrounding thickets. Due to the potential habitat suitability of the seasonal stream, and the apparent presence of this species in the area, there is a high chance that it occurs at the site, and will be impacted by the development. However, no observations (visual or acoustic) were made of this species during the site visit of 1 November 2023. It is therefore possible that the drainage line acts as a corridor for this species, but was not utilised for breeding during the time of the second site visit. Due to the short nature of the call that was given during the March 2023 visit, no recording of the sound could be made to post to iNaturalist, nor could a photograph be taken, due to the secretive nature of this species. Due to habitat suitability, however, it is assumed that this species frequents the thicket vegetation along the drainage line, and could occur in

groups of up to ten individuals (based on personal observations in areas of similar size and vegetation structure at Still Bay, Western Cape).

A total of 43 animal species were recorded during the site visits (Appendix 2), with 18 species recorded during the March 2023 site visit, and 30 species recorded during the November 2023 site visit. Apart from the *B. sylvaticus* heard during the March 2023 site visit, none of the species recorded were of conservation concern, and the majority were generalist species that are common in the area.

5.2. Development impacts on SCC

The development will have different impacts on the SCC occurring (or possibly occurring) at the study site during the initial construction phase and the subsequent operational phase. The likely impacts on each of the SCC are discussed for the construction and operational phases separately, and summarised in a table for each SCC. In the discussion, and the summary tables, the "non-mitigated alternative" refers to the SDP without consideration for sensitive areas (Fig. 2), the "preferred alternative" refers to the SDP that incorporates the recommendations and sensitivity scores of the site sensitivity verification reports (Fig. 3), and "no go" refers to no development or interaction (including the exclusion of fire, and no further removal of exotic plants from the property).

5.2.1. Impacts during the construction phase

During the initial construction phase, the main impacts on animal species will consist of **removal of vegetation** within the development footprint, and **noise disturbance** in the general area (including the areas that will not be developed, such as the thicket vegetation).

a) African Marsh-harrier, Circus ranivorus

Circus ranivorus is highly unlikely to be affected by this development, due to the absence of suitable habitat for it to occur at the study area. It is also highly unlikely that it would use the study area as a corridor or feeding site, due to the lack of standing water and reedbeds of sufficient size to support this species. For all three options (non-mitigated alternative, preferred alternative, and no-go), the this development will not affect the species.

b) Knysna Warbler, *Bradypterus sylvaticus*

Bradypterus sylvaticus will potentially be affected more significantly by the development. With a high likelihood of this species occurring in the riparian thicket vegetation on the property, significant disturbances in or near this habitat may influence this species. The most likely impacts consist of the removal of thicket vegetation utilised by B. sylvaticus, and the noise associated with construction affecting breeding of this species. This species has highly seasonal breeding, with nesting, incubation and fledging occurring between September and November (Smith, 2005). During the breeding period, both males and females are resident in the nesting territory; during the remainder of the year, females may move to other areas, while males largely remain behind. Construction is likely to have the most significant impact on this species during the breeding season (September-November). This species requires a dense understorey in thicket vegetation, a habitat that is reduced under the dense canopy of monospecific exotic tree stands (particularly A. cyclops and A. mearnsii). It is therefore important that these exotic trees be removed, and the recovery of the thicket vegetation promoted. As some construction is to take place next to some of the indigenous thicket vegetation, it is important that proper hoarding is utilised, to prevent the spillage of building material into the vegetation or construction workers going into the thicket during the construction phase. Limiting construction to periods outside the breeding season and removing the exotic trees within the thickets (without removing indigenous thicket vegetation) are mitigation measures recommended to reduce the impacts on this species during the construction phase.

Table 4: The likely impacts on *B. sylvaticus* during the construction phase of thedevelopment, for the three alternatives.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Nature of impact	Loss of a section of	Negligible habitat loss.	None, apart from
	habitat, particularly	Disturbance of	potential habitat loss if
	along the thicket edge	breeding attempts, if	the alien invasive
	in the northeastern	construction performed	plants (AIPs) increase
	section of the property.	during breeding	in abundance.
	Noise disturbance,	season.	
	potentially disturbing		
	breeding attempts.		
Extent and duration of	Largely confined to the	If construction occurs	If the thicket vegetation
impact	study area; if too much	during each breeding	gets replaced by AIPs
	thicket vegetation is	season, it could impact	completely, it would
	removed, it would	the persistence of this	have a permanent
	hamper the mobility of	species in the	impact on the species,
	the species in the	surrounding area.	resulting in their
	surrounding	Likely short-term (0-5	disappearance from
	landscape. Likely	years) impacts, but	the study area.
	short-term (0-5 years)	long-term (6-15 years)	
	impacts, but long-term	if repeated	
	(6-15 years) if repeated	disturbances during	
	disturbances occur, or	the breeding season	
	there is large-scale	occurs.	
	habitat loss.		
Consequences of	High, destructive	Medium, destructive	High, destructive
impact or risk	impact;	impact;	impact;
	If habitat loss occurred	Repeated disturbance	Likely extinction of the
	alongside noise	during the breeding	species at the study
	disturbance during the	season may result in	area due to habitat
	breeding season, it	the species	transformation (AIP
	would likely result in	abandoning the study	invasion).
	the species moving	area.	
	away from the area,		
	and possibly not		
	returning in following		
	years.		

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Probability of	Highly probable;	Probable;	Probable;
occurrence	Due to the combination	If noise disturbance	It is difficult to quantify
	of habitat loss and	occurs repeatedly	the likely impacts on
	noise disturbance, this	during the breeding	this species if AIPs
	species would very	season, the	increase in
	likely abandon the site	disturbance is highly	abundance, as the
	for a number of years.	likely to impact this	exotic vegetation
		species. If the impacts	decreases feeding and
		are mitigated, there is a	breeding habitat, but
		low likelihood that this	could still act as a
		species will be	corridor for dispersal.
		impacted severely.	
Degree to which the	If unmitigated, this	With mitigation	If invasion by AIPs
impact may cause	could result in the local	measures, the impacts	increase to the extent
irreplaceable loss of	disappearance of the	are less severe, and	that indigenous thicket
resources	species from the study	with correct application	vegetation is replaced
	area, and likely hamper	of the mitigation	by AIPs, the loss of
	movement of the	measures, the long-	habitat and feeding
	species across the	term impacts would be	resources would be
	landscape.	negligible.	difficult and expensive
			to reverse.
Degree to which the	Habitat loss would be	With negligible habitat	Difficult to reverse if the
impact can be reversed	near impossible to	loss, and mitigating the	area has a very high
	replace/reverse. If the	negative impacts by	density of AIPs and the
	preferred habitat is still	limiting construction to	habitat is no longer
	present, a period of	periods outside the	suitable for the
	construction exclusion	breeding season, the	species.
	during the breeding	impacts can be	
	season could reverse	reversed easily.	
	the species'		
	disappearance from		
	the study area.		
Indirect impacts	None	None	None
Cumulative impact	High (-)	Medium (-)	Medium to High (-)
prior to mitigation			
Significance rating of	High (-)	Medium (-)	Medium to High (-)
impact prior to			
mitigation			

	Non-mitigated	Preferred Alternative	No Go Option	
	Alternative			
Can these impacts be	No	Yes	Not in this scenario	
mitigated?				
Proposed mitigation	No construction during	the breeding season of t	his species (end-August	
	until early-December); No removal of indigenous thicket vegetation;			
	Removal of AIPs, particularly in the thicket vegetation			
Degree of confidence	High	High	Medium (uncertain	
			about how significant	
			the impact of AIPs will	
			be on this SCC)	
Significance of impacts	High	·	·	
on the development	(No development in or adjacent to the thicket vegetation; no construction			
	during the breeding season of this SCC)			

c) Eastern Red Copper, *Aloeides thyra orientis*, and Coastal Blue, *Lepidochrysops littoralis*

Aloeides thyra orientis has a low likelihood of occurrence, with no specimens recorded from the area before, and an absence of the larval host plants at the study site. However, it is possible that there are larval host plants present on the property, and a low (but still possible) likelihood that there were unobserved specimens of this species at the study site. The most significant potential impact of the construction phase on this butterfly species, is the removal of vegetation, resulting in a loss of food for the adults, and a loss of larval host plants for reproduction. This can be mitigated by not clearing short, indigenous vegetation beyond those areas that are necessary to clear, allowing this species (if present) to persist in refugia (safe areas with suitable habitat) during construction. The re-establishment of natural fynbos vegetation in the northeastern corner (where *A. cyclops* had been removed) could aid the survival of this (and other) butterfly species, particularly since it is not to be developed under the Preferred Alternative SDP (as opposed to the Non-mitigated Alternative SDP, where it was earmarked for development).

Lepidochrysops littoralis was not recorded during the site visits, and is not known from the area around the study site. The closest, most recent record of this species, is from the Robinson Pass (approximately 16 km north of the study site), where a specimen was collected in November 1989). This species has been recorded from rocky outcrops in coastal sandy fynbos, but no rocky outcrop is present at the site. The larval food plant of this species is suspected to be *Selago* spp. (Edge, 2005), of which *Selago corymbosa* was recorded at the study site. It is therefore possible that this species does occur at the study site, though there is a low likelihood thereof (due to the lack of specimens from the area, and the lack of rocky outcrops at the study site). If this species is present at the site, the same impacts and mitigations as for *A. thyra orientis* are relevant here: habitat destruction would be the main impact, and establishment of natural fynbos vegetation (particularly in the northeastern section where *A. cyclops* has been removed) would be the best mitigation measure that can be implemented.

Table 5: The likely impacts on A. thyra orientis and L. littoralis during the constructionphase of the development, for the three alternatives.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Nature of impact	Loss of a section of	Loss of a section of	None, apart from
	habitat, particularly in	habitat, particularly in	potential habitat loss if
	sections where there	sections where there	the alien invasive
	are potential larval host	are potential larval host	plants (AIPs, mainly
	plants present.	plants present.	the exotic kikuyu grass,
			Cenchrus
			clandestinum)
			increase in
			abundance.
Extent and duration of	Largely confined to the	Largely confined to the	If left unchecked AIPs
impact	study area; if too much	study area; if too much	(<i>Acacia</i> spp., and
	fynbos vegetation is	fynbos vegetation is	kikuyu grass) would
	removed, it would	removed, it would	likely alter the habitat
	hamper the ability of	hamper the ability of	to the extent that it
	the vegetation to	the vegetation to	could not support these
	sustain the larvae and	sustain the larvae and	species at all if they do
	adults of these	adults of these	occur in the area.
	species, and the	species, and the	Likely long-term (6-15
	mobility of these	mobility of these	years) impacts,
	species in the	species in the	especially if there is a
	surrounding	surrounding	high amount of habitat
	landscape. Likely long-	landscape. Likely long-	transformation due to
	term (6-15 years)	term (6-15 years)	AIPs.
	impacts, considering	impacts, considering	
	the amount of	the amount of	
	vegetation removed for	vegetation removed for	
	the development.	the development.	

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Consequences of	High, destructive	Medium, destructive	Medium, destructive
impact or risk	impact;	impact;	impact;
	Without suitable	Habitat transformation	Impacts are likely less
	habitat, these	and habitat destruction	severe than for <i>B</i> .
	butterflies are highly	will impact these	s <i>ylvaticus</i> , but if the
	unlikely to occur at the	species (if they are	existing vegetation
	site (if they are present	present but	with suitable larval food
	but undetected).	undetected). However,	is replaced by stands
		with some areas	of AIPs, there would be
		remaining as green	no suitable habitats left
		space, there are still	for these species.
		remnants of suitable	
		habitat present.	
Probability of	Highly probable;	Probable;	Probable;
occurrence	Due to habitat loss,	If, as per this SDP,	It is difficult to quantify
	these species would	there is ample green	the likely impacts on
	very likely abandon the	space present on the	these species if AIPs
	site for a number of	property, with suitable	increase in
	years.	habitat, the likelihood	abundance, as the
		of these impacts	exotic vegetation
		occurring is less than	decreases feeding and
		without mitigation.	breeding habitat, but
			the extent to which
			these species will be
			affected (if they are
			present) is difficult to
			quantify.
Degree to which the	If unmitigated, this	With mitigation	If invasion by AIPs
impact may cause	could result in the local	measures, the impacts	increase to the extent
irreplaceable loss of	disappearance of	are less severe, and	that indigenous fynbos
resources	these (and other	with correct application	vegetation is replaced
	butterfly) species from	of the mitigation	by AIPs, the loss of
	the study area, if they	measures, the long-	habitat and feeding
	are present.	term impacts would be	resources would be
		negligible.	difficult and expensive
			to replace.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Degree to which the	Habitat loss would be	With reduced habitat	Difficult to reverse if the
impact can be reversed	near impossible to	loss, and mitigating the	area has a very high
	replace/reverse. If the	negative impacts by	density of AIPs and the
	preferred habitat is still	limiting construction to	habitat is no longer
	present post-	demarcated areas	suitable for these
	development, the	(and keeping some	species.
	maintenance of the	fynbos vegetation	
	fynbos vegetation for	intact), the impacts can	
	these (and other)	be reversed	
	butterfly species could	moderately easily.	
	reverse the impacts of		
	the development.		
Indirect impacts	None	None	None
Cumulative impact	High (-)	Medium (-)	Medium to High (-)
prior to mitigation			
Significance rating of	High (-)	Medium (-)	Medium to High (-)
impact prior to			
mitigation			
Can these impacts be	No	Yes	Not in this scenario
mitigated?			
Proposed mitigation	Conservation of some in	tact fynbos vegetation wit	h larval food plants.
Degree of confidence	Medium (not certain	Medium (not certain	Medium (not certain
	whether these species	whether these species	whether these species
	are absent from the	are absent from the	are absent from the
	site or simply	site or simply	site or simply
	unrecorded during the	unrecorded during the	unrecorded during the
	site visits)	site visits)	site visits)
Significance of impacts	High		
on the development	(Some fynbos vegetation	n should be left as part of	the green belt)

d) Sensitive Species 8

Sensitive Species 8 (which cannot be disclosed), was not recorded at the study site during the two surveys. This species frequents thickets and forested areas, but there are very few records of the species west of George, Western Cape. Due to the proximity of this development to already-existing infrastructure, there is a low to medium likelihood of this species occurring at the study area.

The riparian thicket bisecting the property is, however, very dense, and it is possible that this species inhabits this thicket. Anecdotal records indicate that this species likely occurred all along the coast in the area forty years ago, but urban expansion in the area may have resulted in their population decline (or possible regional extinction). If they are in the area, the main impacts during the construction phase will be noise disturbance, a loss of habitat (if the indigenous thicket is not preserved), potential snaring by workers, and reduced mobility. These animals are non-seasonal breeders, and there is no set time to limit construction to in order to mitigate these impacts. In terms of habitat loss, this impact will be minimal, as long as the thicket remains intact.

A reduction in mobility may be a more serious threat, as the property is likely to be surrounded by a fence that does not allow for terrestrial animal movement. It is suggested that the presence or absence of this species is determined through the use of camera traps or track monitoring post-development (see the impacts during the operational phase section), and management interventions be implemented if they are present. Additionally, small funnel-like structures or gaps can be placed in the fenceline, to facilitate the movement of these and other small to medium-sized animals. These funnels can be small enough to prevent human trespassers from gaining access to the property, while still allowing smaller animal species such as Sensitive Species 8, caracal, genets, and mongooses to move past the fenceline. It is recommended that these gaps are 20 cm wide, and 30 cm in height, and should be placed (a) adjacent to the stream habitat, and (b) in areas where these animals can easily be cornered. Care must be taken not to place them along the main road to the south of the property (to avoid collisions with passing cars). Camera traps can also be set up at these funnels, to monitor the use thereof by local wildlife. It is recommended that these funnels are monitored (with camera traps, or by the environmental control officer investigating each funnel for signs of Sensitive Species 8 and other wildlife using the funnels) during construction, and again 6 months after construction, to monitor whether a change in animal species moving through the fence is observed.

Lastly, there is a chance that snares are set by workers during the construction phase. Constant monitoring by the environmental site officer will be important to prevent this from happening. The setting of snares will not only affect this species, but would also impact some of the other animal species present in the area (e.g. Cape Grysbok, Bushbuck, Caracal, and Porcupine). It is therefore important that it is specified in the environmental management plan that it is the environmental site officer's responsibility to prevent the setting of snares during any construction on the property.

Table 6: The likely impacts on Sensitive Species 8 during the construction phase ofthe development, for the three alternatives.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Nature of impact	Loss of a section of	Little loss of thicket	None, apart from
	habitat, particularly the	habitat, but noise	potential habitat loss if
	dense thicket	disturbance during	the alien invasive
	vegetation. Also, noise	construction still a	plants (AIPs, mainly
	disturbance during	potential disturbance.	the exotic A. cyclops
	construction.	Reduction in mobility	and <i>A. mearnsii</i>)
	Reduction in mobility	associated with	increase in
	associated with	fencing of the property.	abundance.
	fencing of the property.	Snaring by workers on-	
	Snaring by workers on-	site.	
	site.		
Extent and duration of	Largely confined to the	Largely confined to the	If left unchecked AIPs
impact	study area; if too much	study area; there is	(<i>Acacia</i> spp.) would
	thicket vegetation is	little reduction in	likely alter the habitat
	removed, it would	suitable habitat, but the	to the extent that it
	hamper the ability of	mobility of this species	could not support these
	the vegetation to	in the surrounding	species in terms of
	sustain this species,	landscape may still be	food, if they do occur in
	and the mobility of this	reduced. Likely long-	the area. Likely long-
	species in the	term (6-15 years)	term (6-15 years)
	surrounding	impacts, considering	impacts, especially if
	landscape. Likely long-	the degree to which	there is a high amount
	term (6-15 years)	mobility is hampered.	of habitat
	impacts, considering	Snaring by workers will	transformation due to
	the amount of	only be a potential	AIPs.
	vegetation removed for	issue during the	
	the development.	construction phase.	
	Snaring by workers will		
	only be a potential		
	issue during the		
	construction phase		
	itself.		

		Non-mitigated	Preferred Alternative	No Go Option
		Alternative		
Consequences	of	High, destructive	Medium, destructive	Medium, destructive
impact or risk		impact;	impact;	impact;
		The noise disturbance	The noise disturbance	Impacts are likely less
		of construction is likely	of construction is likely	severe than for <i>B</i> .
		to result in individuals	to result in individuals	<i>sylvaticus</i> , but if the
		of this species moving	of this species moving	existing thicket
		away. This, along with	away. This, along with	vegetation is replaced
		a reduction in suitable	a reduction of mobility	by stands of AIPs,
		habitat (thicket), along	associated with	there would be no
		with a reduction of	fencing of the property	suitable habitats left on
		mobility associated	is likely to lead to a	the property for this
		with fencing of the	reduction in the	species.
		property is likely to lead	survivability of this	
		to a reduction in the	species at the site, if	
		survivability of this	they occur there but	
		species at the site, if	are undetected.	
		they occur there but		
		are undetected).		
Probability	of	Probable;	Probable;	Probable;
occurrence		Due to habitat loss and	If, as per this SDP,	It is difficult to quantify
		noise disturbance, this	there is ample green	the likely impacts on
		species would possibly	space present on the	this species if AIPs
		abandon the site for a	property, with suitable	increase in
		number of years.	habitat, the likelihood	abundance, as the
			of these impacts	exotic vegetation
			occurring is less than	decreases feeding and
			without mitigation.	breeding habitat.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Degree to which the	If unmitigated, this	With mitigation	If invasion by AIPs
impact may cause	could result in the	measures, the impacts	increase to the extent
irreplaceable loss of	eventual local	are less severe, and	that indigenous thicket
resources	disappearance of this	with correct application	vegetation is replaced
	species from the study	of the mitigation	by AIPs, the loss of
	area, if it is present.	measures, the long-	habitat and feeding
	Catching of animals	term impacts would be	resources would be
	with snares could	negligible.	difficult and expensive
	result in the removal of	Catching of animals	to replace.
	this species from the	with snares could	
	area, as they have	result in the removal of	
	large territories, and	this species from the	
	there would be a	area, as they have	
	maximum of two or	large territories, and	
	three present in the	there would be a	
	immediate area.	maximum of two or	
		three present in the	
		immediate area.	
Degree to which the	Habitat loss would be	With negligible habitat	Difficult to reverse if the
impact can be reversed	near impossible to	loss, and mitigating the	area has a very high
	replace/reverse. If the	negative impacts by	density of AIPs and the
	preferred habitat is still	limiting construction to	habitat is no longer
	present post-	demarcated areas, the	suitable for this
	development, the	impacts can be	species.
	maintenance of the	reversed moderately	
	thicket vegetation (in	easily.	
	terms of AIP clearing)	Reversal of snaring	
	for this species could	would be difficult to	
	reverse the impacts of	achieve, as it would	
	the development.	require re-introduction	
	Reversal of snaring	of new individuals.	
	would be difficult to		
	achieve, as it would		
	require re-introduction		
	of new individuals.		
Indirect impacts	None	None	None

	Non-mitigated	Preferred Alternative	No Go Option	
	Alternative			
Cumulative impact	High (-)	Medium (-)	Medium to High (-)	
prior to mitigation				
Significance rating of	High (-)	Medium (-)	Medium to High (-)	
impact prior to				
mitigation				
Can these impacts be	No	Yes	Not in this scenario	
mitigated?				
Proposed mitigation	Conservation and manage	gement (e.g. removal of Al	Ps) of thicket vegetation.	
	Using a fence that allows this species to move through, while still excluding			
	human trespassers.			
	No unsupervised workers on the property, and ensuring that no animals			
	are captured on the prop	perty (close supervision).		
Degree of confidence	Medium (not certain	Medium (not certain	Medium (not certain	
	whether this species is	whether this species is	whether this species is	
	absent from the site or	absent from the site or	absent from the site or	
	simply unrecorded	simply unrecorded	simply unrecorded	
	during the site visits)	during the site visits)	during the site visits)	
Significance of impacts	High			
on the development	(Indigenous thicket vegetation should be left undisturbed apart from AIP			
	removal, and the fence around the property should allow this species to			
	move through the area)			

e) Yellow-winged Agile Grasshopper, *Aneuryphymus montanus*

Aneuryphymus montanus was not recorded at the site during the site visits, nor is it likely to occur at the study area, due to an absence of the preferred habitat (arid, sclerophyllous fynbos) and preferred substrate (rocky areas within the preferred habitat). The closest records of this species are from the Swartberg and Langkloof, which are both dominated by arid, sclerophyllous fynbos on rocky substrates. Due to the highly unlikely nature of this species' occurrence at the site, the development is highly unlikely to have an influence on the continued survival of this species

Based on the above descriptions and tables, the main impacts on the SCC occurring at the study site (B. sylvaticus) and possibly occurring at the site (A. thyra orientis, L. littoralis and Sensitive Species 8) during construction consist of noise disturbance, reduction in available habitat, and reduction in mobility (for Sensitive Species 8). These impacts are more severe for the SDP without mitigation, while the SDP with mitigation has development confined to areas outside the thicket vegetation (reducing the potential impacts on *B. sylvaticus* and Sensitive Species 8), and with sufficient green space on the property to promote the persistence of indigenous species occurring on the property. The no-go alternative (consisting of no development or intervention) is likely to result in an increase in AIPs on the property, which will likely impact the SCC (and other indigenous species on the property) negatively. The main mitigation measures that can be implemented consist of limiting construction to periods outside the breeding season of *B. sylvaticus*, using a fence that promotes the movement of Sensitive Species 8 between this and adjacent property, and establishing areas where indigenous fynbos vegetation (with the larval plant species of the two butterfly species are present), and maintaining these areas correctly.

5.2.2. Impacts during the operational phase

During the operational phase, impacts on animal species could include increased predation of *B. sylvaticus* by pets (particularly cats), invasion by garden ornamental plants, disturbance in sensitive areas, reduced movement of species such as Sensitive Species 8, and re-invasion of exotic *Acacia* species post-clearing.

a) African Marsh-harrier, Circus ranivorus

Circus ranivorus is unlikely to be impacted by this development in the operational phase, due to the lack of suitable habitat for this species to occur at the study area, and the very low likelihood that it occurs at the site. Since this species is also highly unlikely to use this property as a corridor between areas with suitable habitat, this development will not impact the continued survival of this species.

b) Knysna Warbler, *Bradypterus sylvaticus*

Bradypterus sylvaticus is more likely to be impacted by the operational phase of this development. The main impacts are increased predation by cats (feral and domestic), disturbance during the breeding season, and a change in habitat (particularly if exotic plants such as the *Acacia* species re-establish post-clearing. Leaving the study area undisturbed (the no-go alternative) would likely result in an increased canopy density, dominated by exotic *Acacia* species, leading to a decrease in the undergrowth and a subsequent decrease in this species within the thicket vegetation. Predation by feral and domestic cats could be a more serious threat to the persistence of this species, particularly during the breeding period, when vulnerable chicks and fledglings are present. Visser and Hockey (2002) recorded a mortality rate of 83.3 per cent of eggs and chicks up to fledging, likely due to nocturnal predators (such as rodents and cats). Cats have also been proven to be highly destructive in areas around habitation, and have been estimated as the most significant anthropogenic cause of mortality in North American birds and mammals (Loss et al., 2013). Mitigation measures that can be implemented are:

- (a) the removal (during the construction phase outside the breeding season) and continued control (during the operational phase, but outside the breeding season) of exotic trees such as *Acacia cyclops* and *A. mearnsii*;
- (b) preventing unnecessary disturbance (such as clearing) of indigenous thicket vegetation; and
- (c) prohibiting the presence of domestic cats on the property; or
- (d) requiring that all pets (cats and dogs, particularly) are housebound (i.e., no freeroaming cats and dogs on the property), to reduce the predation risk to adults or their chicks.

Table 7: The likely impacts on *B. sylvaticus* during the operational phase of the development, for the three alternatives.

	Non-mitigated Alternative	Preferred Alternative	No Go Option
Nature of impact	Noise disturbance from	Negligible habitat loss.	None, apart from
	houses directly adjacent to	Predation by cats,	potential habitat loss if
	the thicket vegetation.	particularly during the	the alien invasive
	Predation by cats,	breeding season.	plants (AIPs) increase
	particularly during the		in abundance.
	breeding season.		
Extent and	Likely short-term (0-5	Likely short-term (0-5	If the thicket vegetation
duration of impact	years) impacts, but long-	years) impacts, but	gets replaced by AIPs
	term (6-15 years) if there is	long-term (6-15 years)	completely, it would
	a high mortality of chicks,	if there is a high	have a permanent
	fledglings and adults	mortality of chicks,	impact on the species,
	caused by domestic cats, or	fledglings and adults	resulting in their
	if disturbances from	caused by domestic	disappearance from
	residences result in these	cats, or if disturbances	the study area.
	birds leaving the area.	from residences result	
		in these birds leaving	
		the area.	
Consequences of	High, destructive impact;	High, destructive	High, destructive
impact or risk	If excessive noise	impact;	impact;
	disturbance occurs in	Lower likelihood of	Likely extinction of the
	residences adjacent to	noise disturbances	species at the study
	thicket vegetation during	affecting this species,	area due to habitat
	the breeding season, it	as there are no	transformation (AIP
	would likely result in the	residences adjacent to	invasion).
	species moving away from	the thicket vegetation.	
	the area, and possibly not	Reduced breeding	
	returning in following years.	success and increased	
	Reduced breeding success	predation by domestic	
	and increased predation by	cats could result in the	
	domestic cats (especially	local extinction of the	
	from residences adjacent to	species.	
	the thicket) could result in		
	the local extinction of the		
	species.		

	Non-mitigated Alternative	Preferred Alternative	No Go Option
Probability of	Highly probable;	Probable;	Probable;
occurrence	Due to the combination of	If the impacts	It is difficult to quantify
	noise disturbance adjacent	(particularly of	the likely impacts on
	to the thicket vegetation,	predation) are	this species if AIPs
	and increased predation,	mitigated, there is a	increase in
	this species would very	low likelihood that this	abundance, as the
	likely abandon the site for a	species will be	exotic vegetation
	number of years.	impacted severely.	decreases feeding and
			breeding habitat, but
			could still act as a
			corridor for dispersal.
Degree to which	If unmitigated, this could	With mitigation	If invasion by AIPs
the impact may	result in the local	measures, the impacts	increase to the extent
cause	disappearance of the	are less severe, and	that indigenous thicket
irreplaceable loss	species from the study	with correct application	vegetation is replaced
of resources	area, and likely hamper	of the mitigation	by AIPs, the loss of
	movement of the species	measures, the long-	habitat and feeding
	across the landscape.	term impacts would be	resources would be
		negligible, and this	difficult and expensive
		property could act as a	to reverse.
		source population for	
		the surrounding areas.	
Degree to which	If predation by cats is	If predation by cats is	Difficult to reverse if the
the impact can be	impacting this species at	impacting this species	area has a very high
reversed	the study area, the removal	at the study area, the	density of AIPs and the
	of all cats from the property	removal of all cats from	habitat is no longer
	could reverse these impacts	the property could	suitable for the
	(if the habitat is still in good	reverse these impacts	species.
	enough condition to support	(if the habitat is still in	
	this species).	good enough condition	
		to support this	
		species).	
Indirect impacts	None	None	None
Cumulative	High (-)	Medium (-)	Medium to High (-)
impact prior to			
mitigation			

		Non-mitigated Alternative	Preferred Alternative	No Go Option	
Significance	e rating	High (-)	Medium (-)	Medium to High (-)	
of impact p	orior to				
mitigation					
Can	these	Yes	Yes	Not in this scenario	
impacts	be				
mitigated?					
Proposed		No free-roaming domestic	cats on the property	(i.e., all cats must be	
mitigation		housebound, especially durir	ng the breeding season of	September-December).	
		No removal of indigenous thicket vegetation			
		Removal of AIPs, particularly in the thicket vegetation.			
		If trails are developed through the thicket vegetation (see Recommendations			
		section), these trails must keep the thicket vegetation as intact as possible			
		(especially adjacent to the st	ream that flows through th	ne property)	
Degree	of	High	High	Medium (uncertain	
confidence				about how significant	
				the impact of AIPs will	
				be on this SCC)	
Significance	e of	High			
impacts o	n the	(No development in or adjac	ent to the thicket vegetat	ion; no domestic or feral	
developme	nt	cats on the property)			

c) Eastern Red Copper, *Aloeides thyra orientis*, and Coastal Blue, Lepidochrysops littoralis

Aloeides thyra orientis is unlikely to be impacted by this development, as it likely does not occur at the property. If it is present without being detected during the two site visits, it could be impacted by residents spraying pesticides, and a potential absence of suitable habitat (especially if the no-go option occurs, and *A. mearnsii* and *A. cyclops* invades previously-cleared areas). A mitigation measure (for this species, *L. littoralis* and other fynbos butterfly species) is to maintain a section of intact fynbos with indigenous larval host plants (*Selago, Indigofera, Aspalathus*, etc.) in a section of the property away from the houses (in lower disturbance areas). Figure 9 suggests areas on the property that may be suitable for this type of vegetation. Though the use of fire to maintain this section of fynbos vegetation is preferred (but difficult to implement), rejuvenation of this vegetation could be stimulated by brushcutting the vegetation once every ten years, to simulate the removal of plant cover by fire. Another

mitigation measure could be to prohibit the use of pesticides that are not pollinatorfriendly, as these are less likely to affect the adult butterflies (but would still impact their larval stages).

Lepidochrysops littoralis (if this species in present at the study area, but undetected during the two site visits) is likely to be impacted by the operational phase of this development in a manner similar to *A. thyra orientis*. As a result, the same mitigation measures (prohibiting the use of pollinator-unfriendly pesticides, and establishing and maintaining a section of fynbos vegetation with larval host plants in a section of the property where disturbance is unlikely) apply to mitigate the potential impacts on this SCC.

Table 8: The likely impacts on *A. thyra orientis* and *L. littoralis* during the operationalphase of the development, for the three alternatives.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Nature of impact	Very little habitat (and	Loss of a section of	None, apart from
	larval host plants) left,	habitat, particularly in	potential habitat loss if
	due to conversion of	sections where there	the alien invasive
	habitat into residential	are potential larval host	plants (AIPs, mainly
	plots. Pesticide use in	plants present. Some	the exotic Acacia spp.
	residential gardens	suitable habitat still	and kikuyu grass,
	may impact larvae and	remaining. Pesticide	Cenchrus
	adults of these	use could impact any	clandestinum)
	species.	larvae or adults in the	increase in
		area.	abundance.
Extent and duration of	Largely confined to the	Largely confined to the	If left unchecked, AIPs
impact	study area; if	study area; if too much	(<i>Acacia</i> spp., and
	pesticides are used	fynbos vegetation is	kikuyu grass) would
	frequently in gardens	replaced by residential	likely alter the habitat
	(especially pollinator-	units, it would hamper	to the extent that it
	unfriendly pesticides),	the ability of the	could not support these
	it would result in a drop	vegetation to sustain	species at all if they do
	in pollinators, including	the larvae and adults of	occur in the area.
	these butterflies (if they	these species (if they	Likely long-term (6-15
	are indeed at the site).	are present at the site),	years) impacts,
	The reduction in	and the mobility of	especially if there is a
	suitable habitat also	these species in the	high amount of habitat
	reduces the likelihood	surrounding	transformation due to
	that this area can	landscape. Pesticide	AIPs.
	function as a corridor	use, especially in	
	for the species. Likely	gardens adjacent to	
	long-term (6-15 years)	the green spaces,	
	impacts, considering	could decrease	
	the amount of	pollinator abundance	
	vegetation removed for	in the area. Likely long-	
	the development, and	term (6-15 years)	
	the number of	impacts, considering	
	residential plots in this	the amount of	
	SDP.	vegetation altered for	
		the development.	

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Consequences of	High, destructive	Medium, destructive	Medium, destructive
impact or risk	impact;	impact;	impact;
	Without suitable	Habitat transformation	Impacts are likely less
	habitat, these	and habitat destruction	severe than for <i>B</i> .
	butterflies are highly	will impact these	sylvaticus, but if the
	unlikely to occur at the	species (if they are	existing vegetation
	site (if they are present	present but	with suitable larval food
	but undetected).	undetected). However,	is replaced by stands
		with some areas	of AIPs, there would be
		remaining as green	no suitable habitats left
		space, there are still	for these species.
		remnants of suitable	
		habitat present.	
Probability of	Highly probable;	Probable;	Probable;
occurrence	Due to habitat loss,	If, as per this SDP,	It is difficult to quantify
	these species would	there is ample green	the likely impacts on
	likely disappear from	space present on the	these species if AIPs
	the site, if they are	property, with suitable	increase in
	present but were not	habitat, the likelihood	abundance, as the
	detected during the site	of these impacts	exotic vegetation
	visits.	occurring is less than	decreases feeding and
		without mitigation.	breeding habitat, but
			the extent to which
			these species will be
			affected (if they are
			present) is difficult to
			quantify.
Degree to which the	If unmitigated, this	With mitigation	If invasion by AIPs
impact may cause	could result in the local	measures, the impacts	increase to the extent
irreplaceable loss of	disappearance of	are less severe, and	that indigenous fynbos
resources	these (and other	with correct application	vegetation is replaced
	butterfly) species from	of the mitigation	by AIPs, the loss of
	the study area, if they	measures, the long-	habitat and feeding
	are present.	term impacts would be	resources would be
		reduced.	difficult and expensive
			to replace.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Degree to which the	Habitat loss would be	With reduced habitat	Difficult and expensive
impact can be reversed	near impossible to	loss, and mitigating the	to reverse if the area
	replace/reverse. If the	negative impacts by	has a very high density
	preferred habitat is still	limiting construction to	of AIPs and the habitat
	present post-	demarcated areas	is no longer suitable for
	development, the	(and keeping some	these species.
	maintenance of the	fynbos vegetation	
	fynbos vegetation for	intact), the impacts can	
	these (and other)	be reversed relatively	
	butterfly species could	easily.	
	largely reverse the		
	impacts of the		
	development.		
Indirect impacts	None	None	None
Cumulative impact	High (-)	Medium (-)	Medium to High (-)
prior to mitigation			
Significance rating of	High (-)	Medium (-)	Medium to High (-)
impact prior to			
mitigation			
Can these impacts be	Yes	Yes	Not in this scenario
mitigated?			
Proposed mitigation	Conservation of some in	tact fynbos vegetation wit	h larval food plants.
	Planting suitable larval h	ost plants and butterfly fee	eding plants in residents'
	gardens, and promotir	ng planting of indigeno	us flowering plants in
	residents' gardens.		
Degree of confidence	Medium (not certain	Medium (not certain	Medium (not certain
	whether these species	whether these species	whether these species
	are absent from the	are absent from the	are absent from the
	site or simply	site or simply	site or simply
	unrecorded during the	unrecorded during the	unrecorded during the
	site visits)	site visits)	site visits)
Significance of impacts	High		
on the development	(Some fynbos vegetation	n should be left as part of	the green belt)

Fig. 9: The preferred SDP, with the design including mitigation measures recommended by the site sensitivity verification reports. The dark green areas are sections of the property that is suitable for the establishment of butterfly-friendly fynbos vegetation. The northeastern corner (circled in red) is an area where exotic *Acacia* trees have been removed. If this section is kept free of AIPs, and fynbos vegetation allowed to establish, it would be suitable as a butterfly-friendly section of the property.

d) Sensitive Species 8

Sensitive Species 8, if it occurs at the study site but was undetected during the site visits, will be impacted through reduced mobility, and disturbance by humans and dogs. Priority should be given to determine whether this species is present at the site, by using camera traps, or the ECO investigating the funnels within the fence to detect this species moving through these funnels. If this species is present, they are most likely to occur in the thicket vegetation, and their movements will be hampered by the fence around the property. In such a case, it is recommended that mammal gaps (or funnels), approximately 20 cm wide and 30 cm wide, be placed in the fenceline when the fence is constructed. These gaps should be placed in areas where animals are likely to move, such as along the thicket vegetation, but should not be placed along the main road to the south of the property. It is also recommended that the use of these funnels are monitored with camera traps (or site visits by the ECO) 6 months after construction, to determine the use thereof by local wildlife. Prohibiting freeroaming pets on the property is also an important mitigation measure, to reduce the likelihood of mortality occurring due to pets. The continued removal of exotic Acacia species is also an important mitigation measure, as the reduction in understorey vegetation associated with an invasion by these trees will impact these animals negatively.

Table 9: The likely impacts on Sensitive Species 8 during the operational phase of thedevelopment, for the three alternatives.

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Nature of impact	Loss of a section of	Little loss of thicket	None, apart from
	habitat, particularly the	habitat, but noise	potential habitat loss if
	dense thicket	disturbance associated	the alien invasive
	vegetation. Also, noise	with residents and their	plants (AIPs, mainly
	disturbance associated	pets. Reduction in	the exotic A. cyclops
	with residents on the	mobility associated	and <i>A. mearnsii</i>)
	property. Reduction in	with fencing of the	increase in
	mobility associated	property, and a	abundance.
	with fencing of the	potential increase in	
	property, and potential	predation caused by	
	increase in mortality	pets.	
	associated with pets.		
Extent and duration of	Largely confined to the	Largely confined to the	If left unchecked AIPs
impact	study area; if too much	study area; there is	(<i>Acacia</i> spp.) would
	thicket vegetation is	little reduction in	likely alter the habitat
	removed, it would	suitable habitat, but the	to the extent that it
	hamper the ability of	mobility of this species	could not support these
	the vegetation to	in the surrounding	species in terms of
	sustain this species,	landscape may still be	food, if they do occur in
	and the mobility of this	reduced. Likely long-	the area. Likely long-
	species in the	term (6-15 years)	term (6-15 years)
	surrounding	impacts, considering	impacts, especially if
	landscape. Likely long-	the degree to which	there is a high amount
	term (6-15 years)	mobility is hampered,	of habitat
	impacts, considering	and the initial	transformation due to
	the amount of	disturbance associated	AIPs.
	vegetation removed for	with new residents	
	the development.	moving into the	
		properties.	

	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Consequences of	High, destructive	Medium, destructive	Medium, destructive
impact or risk	impact;	impact;	impact;
	The reduction in	The potential noise	Impacts are likely less
	suitable habitat	disturbance associated	severe than for <i>B</i> .
	(thicket), along with a	with residents, along	sylvaticus, but if the
	reduction of mobility	with a reduction of	existing thicket
	associated with	mobility associated	vegetation is replaced
	fencing of the property	with fencing of the	by stands of AIPs,
	is likely to lead to a	property is likely to lead	there would be no
	reduction in the	to a reduction in the	preferred habitat left on
	survivability of this	survivability of this	the property for this
	species at the site, if	species at the site	species.
	they occur there but	(especially if coupled	
	are undetected). In	with potential mortality	
	such a small	caused by pets), if they	
	population, the impacts	occur there but are	
	of even a single	undetected.	
	additional mortality due		
	to dogs and cats, may		
	result in a loss of the		
	species on-site.		
Probability of	Probable;	Probable;	Probable;
occurrence	This species may	If, as per this SDP,	It is difficult to quantify
	abandon this property	there is ample green	the likely impacts on
	during the construction	space present on the	this species if AIPs
	phase, but may be	property, with suitable	increase in
	unable to move back	habitat, the likelihood	abundance, as the
	into the thicket	of these impacts	exotic vegetation
	vegetation on the	occurring is less than	decreases feeding and
	property if the fenceline	without mitigation.	breeding habitat.
	excludes them.		
Degree to which the	If unmitigated, this	With mitigation	If invasion by AIPs
impact may cause	could result in the	measures, the impacts	increase to the extent
irreplaceable loss of	eventual local	are less severe, and	that indigenous thicket
resources	disappearance of this	with correct application	vegetation is replaced
	species from the study	of the mitigation	by AIPs, the loss of
	area, if it is present.	measures, the long-	habitat and feeding
			resources would be

		term impacts would be	difficult and expensive
		negligible.	to replace.
	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Degree to which the	Habitat loss would be	With negligible habitat	Difficult to reverse if the
impact can be reversed	near impossible to	loss, and mitigating the	area has a very high
	replace/reverse. If the	negative impacts by	density of AIPs and the
	preferred habitat is still	limiting construction	habitat is no longer
	present post-	(and therefore noise	suitable for this
	development, the	disturbances	species.
	maintenance of the	associated with	
	thicket vegetation (in	residents) to	
	terms of AIP clearing)	demarcated areas, the	
	for this species could	impacts can be	
	reverse the impacts of	reversed moderately	
	the development.	easily.	
Indirect impacts	None	None	None
Cumulative impact	High (-)	Medium (-)	Medium to High (-)
prior to mitigation			
Significance rating of	High (-)	Medium (-)	Medium to High (-)
impact prior to			
mitigation			
	Non-mitigated	Preferred Alternative	No Go Option
	Alternative		
Can these impacts be	Yes	Yes	Not in this scenario
mitigated?			
Proposed mitigation	Conservation and manag	gement (e.g. removal of Al	Ps) of thicket vegetation.
	Using a fence that allows	s this species to move thro	ough, while still excluding
	human trespassers.		
	No free-roaming pets (cats and dogs) on the p	roperty, to prevent pet-
	induced mortalities. Thi	is includes no free-roam	ning dogs on any trails
	constructed on the prope	erty.	
Degree of confidence	Medium (not certain	Medium (not certain	Medium (not certain
	whether this species is	whether this species is	whether this species is
	absent from the site or	absent from the site or	absent from the site or
	simply unrecorded	simply unrecorded	simply unrecorded
	during the site visits)	during the site visits)	during the site visits)

High
(Thicket vegetation should be left undisturbed apart from AIP removal, the
fence around the property should allow this species to move through the
area, and pets should not be free-roaming on the property.

e) Yellow-winged Agile Grasshopper, Aneuryphymus montanus

Aneuryphymus montanus is highly unlikely to occur at the study area, due to the absence of preferred substrate and vegetation, and the absence of records of this species in a 50 km radius. Though the occurrence of this species at the study area is highly unlikely, the preservation of pockets of indigenous vegetation (as with the two butterfly species) will mitigate any impacts this development may have on this species (however unlikely its presence at the site may be).

5.3. Comparison of the three alternatives

Of the three options (non-mitigated alternative, preferred alternative, and no-go option), the preferred alternative will have the lowest impact on the SCC that is present at the site (*B. sylvaticus*) and the SCC that could be present at the site, though they were not detected during the site visits (Sensitive Species 8, *A. thyra orientis* and *L. littoralis*). Though no development may benefit the SCC, there is also an abundance of AIPs on the property, which would likely alter the fynbos and thicket habitat sufficiently to reduce the suitability of these habitats for the SCC. With the preferred alternative, there is ample designated green space to permit animal movement through the landscape, as well as provide suitable feeding and nesting habitat.

5.4. Site sensitivity verification

The DFFE screening tool flagged the development as having a **High** sensitivity in terms of the terrestrial animal species theme, due to the potential presence of six species of conservation concern. The site visit indicated that the vegetation at the site is highly unlikely to support populations of *Aneuryphymus montanus* and *Circus ranivorus*. It is also unlikely that the site supports populations of Sensitive Species 8, *A. thyra orientis* and *L. littoralis*, though there is a chance that the thicket vegetation could provide shelter for the former, and the fynbos vegetation could support the latter two species. There is, however, a high likelihood that *Bradypterus sylvaticus* occurs at the site, and will be impacted by the development.

Due to the presence of *B. sylvaticus* at the site, but the absence of the other species of conservation concern, the site sensitivity should be considered **High**. The sections of the property that are proposed for the development vary between the non-mitigated alternative and preferred alternative, with more areas potentially under construction with the non-mitigated alternative. Most of these areas have already been transformed through alien invasive plants (notably the southern section, northwestern and eastern sections of the site), and the development is unlikely to have a major impact on SCC in these sections of the site if sufficient indigenous vegetation remain.

A sensitivity map has been drawn up for the property (Fig. 10). The sections that have been proposed for development generally has a low sensitivity (green), but the seasonal stream has been designated as high sensitivity (red), and the adjacent thickets as medium density (yellow). Apart from the removal of exotic trees within these more sensitive areas, they should not be disturbed further.

The seasonal stream is regarded as high sensitivity, due to the high likelihood that this is an important ecological corridor, particularly for Bradypterus sylvaticus, which has a high likelihood of occurring in this area. Though Sensitive Species 8 was not recorded at the site, if it does occur here, it will likely be in the thickets along the stream. The area immediately around the stream vegetation is regarded as medium sensitivity, as disturbances here will likely impact the ecological corridor, and activities/disturbances here should be restricted. The remainder of the site has a low sensitivity, due to no SCC being detected in these areas, low likelihood of the SCC occurring there or using those areas as corridors, and high degrees of habitat alteration or high rates of invasion by exotic plants recorded there.

Table 10: The post-mitigation sensitivity (significance), mitigation measures, and postmitigation significance of the six SCC, as they may be influenced by this development. "Initial sensitivity" is based on the screening tool report's sensitivity, and "Post-mitigation sensitivity" refers to the significance of the impacts the development will have on each species, if mitigation measures are implemented.

Species	Initial	Mitigation measures	Post-
	sensitivity		mitigation
			significance
African marsh-harrier,	High	N/A	Low
Circus ranivorus		(not present at site)	
Knysna warbler,	High	No removal of	Medium
Bradypterus sylvaticus		indigenous thickets	
		Construction only	
		outside the breeding	
		season (which is	
		August-November)	
		 No free-roaming cats 	
		and dogs on property	
		Removal of AIPs in	
		indigenous thicket	
		vegetation	
Coastal blue,	Medium	Conservation of some	Low
Lepidochrysops littoralis		fynbos vegetation in the	
Brenton copper,	Medium	green space	Low
Aloeides thyra orientis		 Planting of suitable 	
		larval host plants in	
		residents' gardens	
		Pesticides used	
		(especially in gardens)	
		must be pollinator-	
		friendly	

Sensitive Species 8	Medium	No removal of	Medium
(which cannot be disclosed)		indigenous thicket	
		vegetation	
		 No free-roaming cats 	
		and dogs on property	
		Proper hoarding used to	
		demarcate thicket that is	
		not to be disturbed	
		No unsupervised	
		workers on the property	
		Use of wildlife funnels to	
		allow movement through	
		the fence	
Yellow-winged agile	Medium	N/A	Low
grasshopper,		(not present at site)	
Aneuryphymus montanus			

Fig. 10: The sensitivity map of RE2833, with low (green), medium (yellow) and high (red) sensitivities indicated.

6. **RECOMMENDATIONS**

Based on the high probability that *Bradypterus sylvaticus* uses the seasonal stream that bisects the property as an ecological corridor, the areas highlighted as high sensitivity should not be disturbed further apart from the removal of the exotic vegetation still present there, and the promotion of natural, indigenous vegetation establishment. This area is an important ecological corridor, and should be treated as such.

If trails on the estate are planned, care should be taken when crossing through the thicket vegetation. It is advised that the exotic plants in this vegetation is removed, and the trail follow the section that previously had the highest density of AIPs. This will reduce the disturbance in intact thicket vegetation, while also allowing easy access for follow-up clearing of AIPs.

As discussed in terms of the development's impacts on the SCC, it is important that pets be housebound (no free-roaming cats and dogs). Additionally, putting up signage to inform homeowners of the impact their pets could have on this bird species, could increase awareness and environmental consciousness of those living on the property. Dogs that are not housebound should be enclosed in a fenced area, to prevent access to more sensitive areas on the property.

Reducing the use of pesticides in gardens would also benefit the two butterfly species of conservation concern that could occur at the site. Ensuring that some fynbos vegetation with suitable larval food plants will also potentially benefit these (and other) species.

Lastly, it is recommended that the presence or absence of Sensitive Species 8 should be determined with the use of camera traps, or by the appointed ECO scouring the property for signs of this species. It is also recommended that mammal-funnels are placed in the fenceline, at places where there is a high likelihood of species such as Sensitive Species 8 moving through the landscape. These mammal-funnels should be monitored (with camera traps, or the ECO visiting each funnel) during the construction phase, as well as 6 months after construction. If individuals of Sensitive Species 8 are

55

unable to move through the fenceline, the risk of inbreeding is high, and they may not be able to access sufficient food or escape from predators, which could have further detrimental impacts on this species. Prof. Jan Venter has indicated his willingness to, for a fee, perform the monitoring of these funnels with camera traps, which is less labour- and time-intensive than performing weekly visits to the funnels.

REFERENCES

- Brown, H.D. 1960. New grasshoppers (Acridoidea) from the Great Karroo and the South Eastern Cape Province. *Journal of the Entomological Society of South Africa* **23** (1): 126 143.
- Child, M.F., Roxburgh, L., Do Linh San, E., Raimondo, D. & Davies-Mostert, H.T.
 2016. *The Red List of mammals of South Africa, Lesotho and Swaziland*. SANBI & EWT: South Africa.
- Edge, D.A. 2021. Revised scoping study Butterflies. Hartenbos Garden Estate: Erf 3122, Mossel Bay, Western Cape Province. Prepared for Cape EAPrac: George.
- Henning, G.A., Terblanche, R.F. & Ball, J.B. 2009. South African Red Data Book: Butterflies. SANBI Biodiversity Series 13. SANBI: Pretoria.
- Loss, S.R., Will, T. & Marra, P.P. 2013. The impact of free-ranging domestic cats on wildlife of the United States. *Nature communications* **4** (1396): 7 pp.
- Mecenero, S., Ball, J.B., Edge, D.A., Hamer, M.L., Henning, G.A., Kruger, M., Pringle,
 E.L., Terblanche, R.F. & Williams, M.C. 2013. Conservation assessment of butterflies of South Africa, Lesotho and Swaziland: Red List and atlas. Saftronics (Pty) Ltd., Johannesburg & Animal Demography Unit, Cape Town.
- Mucina, L. & Rutherford, M.C. (Eds) 2006. *The vegetation of South Africa, Lesotho and Swaziland*. Strelitzia 19. SANBI: Pretoria.
- Simmons, R.E. 2005. African Marsh Harrier, *Circus ranivorus*. In P.A.R. Hockey,W.R.J. Dean & P.G. Ryan (Eds) Roberts Birds of southern Africa 7th ed. TheTrustees of the John Voelcker Bird Book Fund: Cape Town.
- Smith, N. 2005. Knysna Warbler, Bradypterus sylvaticus. In P.A.R. Hockey, W.R.J. Dean & P.G. Ryan (Eds) Roberts - Birds of southern Africa 7th ed. The Trustees of the John Voelcker Bird Book Fund: Cape Town.
- Taylor, M.R., Peacock, F. & Wanless, R.M. 2015. *The 2015 Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland*. Birdlife South Africa: South Africa.
- Venter, J., Seydack, A., Ehlers-Smith, Y., Uys, R. & Child, M.F. 2016. A conservation assessment of <species name redacted>. *In* M.F. Child, L. Roxburgh, E. Do Linh San, D. Raimondo & H.T. Davies-Mostert (Eds) *The Red List of Mammals of South Africa, Lesotho and Swaziland*. SANBI & EWT: South Africa.

Visser, B.G. & Hockey, P.A.R. 2002. Breeding behaviour and performance of the Knysna Warbler, *Bradypterus sylvaticus* on the Cape Peninsula, South Africa. *Ostrich* **73** (3-4): 83-86.

APPENDIX 1: The removal of exotic *Acacia mearnsii* and *A. cyclops* on RE2833, as recorded in aerial imagery, for (A) May 2021; (B) November 2021; March 2022; and (D) August 2022.

APPENDIX 2: The terrestrial animal species recorded at RE2833, during the site visit of 26 March 2023

Common name	Scientific name	Recorded	
Birds		March	November
		2023	2023
Apalis, Bar-throated	Apalis thoracica		Х
Bishop, Yellow	Euplectes capensis		Х
Boubou, Southern	Laniarius ferrugineus		Х
Brownbul, Terrestrial	Phyllastrephus terrestris		Х
Bulbul, Cape	Pycnonotus capensis	Х	
Canary, Cape	Serinus canicollis		Х
Coucal, Burchell's	Centropus superciliosus		Х
Dove, Red-eyed	Streptopelia semitorquata		Х
Flycatcher, African dusky	Muscicapa adusta	Х	
Greenbul, Sombre	Andropadus importunus		Х
Guineafowl, Helmeted	Numida meleagris	Х	Х
Martin, Rock	Ptyonoprogne fuligula		Х
Mousebird, Speckled	Colius striatus		Х
Prinia, Karoo	Prinia maculosa	Х	Х
Robin-chat, Cape	Cossypha capensis		Х
Seedeater, Streaky-headed	Crithagra gularis		Х
Sparrow, Cape	Passer melanurus		Х
Starling, Common	Sturnus vulgaris		Х
Spurfowl, Cape	Pternistis capensis	Х	Х
Sunbird, Greater double-	Cinnyris afer	Х	
collared			
Sunbird, Malachite	Nectarinia famosa		Х
Sunbird, Southern double-	Cinnyris chalybeus		Х
collared			
Swallow, Greater striped	Cecropis cucullata	Х	
Warbler, Knysna*	Bradypterus sylvaticus	X*	
Waxbill, Common	Estrilda astrild		Х

Weaver, Cape		Ploceus capensis		Х
White-eye, Cape		Zosterops virens	Х	Х
Whydah, Pin-tailed		Vidua macroura		Х
Woodpecker, Olive		Chloropicus griseocephalus	Х	
Insects:	Beetles			
(Coleoptera)				
Beetle, Longhorn		Erioderus sp.	Х	
Beetle, Common	metallic	Promeces longipes		Х
longhorn				
Insects: Bugs (Hem	niptera)			
Bug, Leaf-footed		Acanthocoris sp.	Х	
Insects: Wasps, be	ees and			
ants (Hymenoptera)			
Bee, Double	-banded	Xylocopa caffra		Х
carpenter				
Insects: Butterfl	ies &			
Insects: Butterfl Moths (Lepidoptera	ies & a)			
Insects: Butterfl Moths (Lepidoptera Border, Common do	ies & a) tted	Mylothris agathina agathina	х	
Insects: Butterfl Moths (Lepidoptera Border, Common do Brown, Rainforest	ies & a) tted	Mylothris agathina agathina Cassionympha cassius	Х	X
Insects: Butterfl Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African	ies & a) tted	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus	x x	X
Insects: Butterfl Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady	ies & a) tted	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui	X X	x x
Insects: Butterfl Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow	ies & a) tted	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice	X X	X X X
Insects: Butterfl Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum	ies & a) tted	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus	X X X	X X X
Insects: Butterfli Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassi	n noppers	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus	X X X	X X X
Insects: Butterfli Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassi and Crickets (Ortho	n noppers ptera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus	X X X	X X X
Insects: Butterfit Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassi and Crickets (Ortho Locust, Garden	n n noppers noptera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus Acanthacris ruficornis	x x x x	X X X
Insects: Butterfit Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassh and Crickets (Ortho Locust, Garden Mammals	ies & a) tted noppers optera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus Acanthacris ruficornis	x x x x	X X X
Insects: Butterfit Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassh and Crickets (Ortho Locust, Garden Mammals Bushbuck	ies & a) tted noppers optera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus Acanthacris ruficornis Tragelaphus sylvaticus	x x x x x	X X X
Insects: Butterfli Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassf and Crickets (Ortho Locust, Garden Mammals Bushbuck Mouse, Striped field	ies & a) tted noppers optera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus Acanthacris ruficornis Tragelaphus sylvaticus Rhabdomys pumilio	x x x x x x	x x x
Insects: Butterfit Moths (Lepidoptera Border, Common do Brown, Rainforest Monarch, African Painted lady White, Meadow Widow, Cape autum Insects: Grassf and Crickets (Ortho Locust, Garden Mammals Bushbuck Mouse, Striped field Porcupine, Cape	ies & a) tted noppers optera)	Mylothris agathina agathina Cassionympha cassius Danaus chrysippus Vanessa cardui Pontia helice Dira clytus Acanthacris ruficornis Tragelaphus sylvaticus Rhabdomys pumilio Hystrix africaeaustralis	x x x x x	x x x x

*Not recorded on the site, but in a property directly adjacent to the site.

APPENDIX 3: The vegetation at the northwestern corner of the property, where exotics have been cleared, and indigenous shrubs and trees are regrowing (centred on S 34° 3'16.36"; E 22°12'8.61")

APPENDIX 4: The vegetation characteristic of the thicket vegetation along the stream that bisects the property (centred on S 34° 3'17.26"; E 22°12'12.47")

APPENDIX 5: The vegetation characteristic of the areas where alien invasive plants (exotic *Acacia* spp.) have been removed. Photos taken in the area centred around S 34° 3'18.90"; E 22°12'10.00".

APPENDIX 5: The vegetation characteristic of the grassy, southern section of the property (centred around S 34° 3'22.68"; E 22°12'11.39")

