TRAFFIC IMPACT STUDY FOR

PARKDENE FILLING STATION, ERF 11221, GEORGE

REPORT VKE11/54.01.Rev00

MARCH 2012

Prepared for:

Aboo Ismail Lenasia Builders and Developers CC P.O. Box 6007 Lenasia North 1838

Prepared by:

Vela VKE Consulting Engineers P.O. Box 10633 GEORGE 6530

TEL: (044) 873 5029

TEL: (011) 852 3288

Table of Contents

1	Intr	oduction1
2	The	Proposed Development1
3	Exi	sting Road Network and Access Points1
4	Tra	ffic Counts2
5	Trip	Generation3
6	Trip	o distribution3
7	Ope	erational Analysis4
7	' .1	2012 -Traffic with the proposed new development5
7	' .2	2017 - Traffic with proposed new development8
8	Sur	nmary and Recommendations12
9	Bib	liography13
AN	NEX	URE A14
F	IGU	RES14
AN	NEX	URE B15
Т	RAF	FIC VOLUMES15
AN	NEX	URE C16
S	SIDR	A RESULTS16

1 Introduction

Vela VKE has been appointed by Lenasia Builders and Developers CC to conduct a Traffic Impact Assessment for the proposed Parkdene filling station development, within the George municipal area. The locality and site plan of the proposed development is shown in **Figure 1**, **ANNEXURE A**. The study will look at the effect of the traffic generated by the new filling station development on the road network, and where necessary introduce mitigation measures.

The study will be in accordance with the guideline document of the Department of Transport titled, "Manual for Traffic Impact Studies".¹

2 The Proposed Development

The development proposal consists of a new filling station and shopping space with a total covered area of $\pm 288m^2$. Figure 2, ANNEXURE A shows the development plan.

3 Existing Road Network and Access Points

The proposed access points from the development connect onto Main Street and Golf Street. Main Street and Golf Street is situated within the George Municipal area and connects to Sandkraal Road, which gives access to the N2-National Road. Due to the higher order road status of Sandkraal Road, no direct access will be allowed from the filling station site.

The photo below shows the proposed location for the access from Main Street. Sight distance from both the access points is acceptable. The proposed new entrance is further than 20m from the Sandkraal Road signalized junction as describe in the "Geometric Design of Urban Collector Roads, Draft UTG 5"² guideline document.

¹ Manual for Traffic Impact Studies

² Geometric Design of Urban Collector Roads, Draft UTG 5

4 Traffic Counts

A 12-hour week day count was recorded on 8 November 2011 at the intersection of Sandkraal Road and Main Street. This traffic count was analysed and used to extract the traffic volumes for the morning (AM) and afternoon (PM) peak hours. The peak hour volumes obtained from the counting data is shown in Table 1.

Table 1: 2011 Peak hour volumes

LOCATION	PEAK HOU	R VOLUME
	AM	PM
Sandkraal Road from George CBD	1425	1368
Sandkraal Road from Thembalethu	1363	1256
From Main Street into Sandkraal Road	509	413
From Vuyani Ncamazana into Sandkraal Road	221	147

These 2011 volumes will be growthed at 3% per annum to obtain the 2012 base year volumes and the 2017 design horizon volumes. The traffic counts are also represented graphically in **Figure 3**, **ANNEXURE A** and the recorded traffic volumes can be seen in **ANNEXURE B**.

5 Trip Generation

The document "South African Trip Generation Rates, 2nd Edition," ³ was used as the guideline document to obtain the peak hour trips generated by the proposed new filling station development. Trip generation values for a filling station in urban areas were used. The document states *"The recommended trip generation rate of service stations in urban areas in terms of the percentage traffic attracted from the adjacent street(s) is 4.0% during the morning peak hour, 4.0% the afternoon peak hour, and also 4.0% during both 12 and 24 hour periods. It is also recommended to assume that 16% of the trips attracted by service stations are new, that is additional traffic on the street network." The expected peak hour trips are shown in Table 2.*

Table 2: Trips generated in the peak hour (2012)

				PEAK HO	UR TRIPS
PROPOSED LAND-USE	RATE	TRIP GENERATION	IN/OUT SPLIT	Week day AM OUT/IN	Week day PM OUT/IN
Filling Station - Urban Area	Current traffic 4%	4% x Volume	50/50	11/11	10/10
Filling Station - Urban Area	New traffic 16%	16% x Volume	50/50	42/42	34/34
				53/53	44/44

Generated peak trips for the AM and PM will be superimposed on the growthed background traffic and simulated to obtain the effect of the development traffic on the existing road network.

6 Trip distribution

The trip distribution to and from the proposed development during the peak hour will be split as in **Figure 4**, **ANNEXURE A**.

During the AM peak hour

- 44% of trips will move towards the east on Main Street
- 56% of trips will move towards the west on Main Street

³ South African Trip Generation Rates, 2nd Edition,

During the PM peak hour

- 66% of trips will move towards the east on Main Street
- 34% of trips will move towards the west on Main Street

The above distribution rates were obtained from the traffic counts at the proposed access point. The generated trips to and from the proposed development will make use of access points onto Main Street and Golf Street.

7 Operational Analysis

The operational analysis is done with the "SIDRA INTERSECTION 5.1" ⁴ computer software that is suited for traffic engineering capacity analysis. When elements of a road network such as intersections are analysed, their operating conditions are described in terms of Level of Service (LOS). The six letters from A to F are used to indicate different LOS. LOS A indicates very low traffic flows with correspondingly low delays. LOS E reflects capacity conditions, with high delays and unstable flow. LOS F reflects conditions where traffic demand exceeds capacity and traffic experiences congestion and delays. Generally LOS A to D is considered acceptable in accordance with international standards. LOS E and F on the other hand are considered to be unacceptable.

The Average Delay is the delay in seconds that a motorist is likely to experience on an approach to the junction, while waiting for the junction to clear or other vehicles to manoeuvre. A further measure of the operating conditions prevailing at any point in a road network is the volume to capacity ratio (v/c). As the name implies it is the traffic demand volume divided by the available capacity of the road element. Generally ratios of up to approximately 0.9 are internationally considered acceptable. Values exceeding 1.0 implies saturation of the facility.

The Future 2017 AM and PM peak hour with the development traffic is shown in **Figure 5**, **ANNEXURE A**. The results of the SIDRA analysis are shown in **ANNEXURE C**.

⁴ SIDRA INTERSECTION 5.1

7.1 2012 -Traffic with the proposed new development

Table 3 and Table 4 shows a summary of the operational performance analysis for the existing signalized intersection at Sandkraal Road and the new T-junction at the filling station for the AM and PM peak hours. The background traffic and the generation of the new filling station were used in the analysis.

Table 3: 2012 Operational performance: Sandkraal Road signalized junction for the AM & PMpeak hours

		A	M PEAK HOUI	3	Р	M PEAK HOU	R
APPROACH	MOVEMENT	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACIT Y RATIO	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO
Sandkraal	Left	С	24.0	0.782	В	18.7	0.447
from N2	Through	В	15.8	0.782	В	10.5	0.447
(South)	Right	С	30.2	0.725	С	31.5	0.501
Main Street	Left	С	27.2	0.631	С	24.6	0.306
(East)	Through	В	19.0	0.631	В	16.4	0.306
× ,	Right	С	27.1	0.631	С	24.5	0.306
Sandkraal	Left	В	17.0	0.156	В	17.6	0.269
from George	Through	В	10.7	0.479	В	13.8	0.735
CBD	Right	С	32.2	0.191	С	22	0.085
Vuvani Street	Left	С	24.1	0.198	С	24.1	0.206
(West)	Through	В	15.9	0.198	В	15.9	0.206
, ,	Right	С	24.1	0.198	С	24.2	0.206

From the results it is evident that the junction will operate at an acceptable level for both the AM and PM peak hour for the current (2012) scenario. The figure below shows a schematic layout of the junction.

 Table 4: 2012 Operational performance: Main Street / Filling Station junction for the AM & PM

 peak hours

		A	M PEAK HOU	R	Р	M PEAK HOU	R
APPROACH	MOVEMENT	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO
Filling station	Left	В	10.2	0.055	А	9.7	0.044
(South)	Right	В	10.1	0.055	А	9.7	0.044
Main Street	Left	A	8.2	0.175	A	8.2	0.086
(East)	Through	А	0	0.175	А	0	0.086
Main Street	Through	А	0	0.125	A	0	0.152
(West)	Right	A	9.5	0.032	A	8.9	0.037

From the results it is evident that the junction will operate at an acceptable level for both the AM and PM peak hour for the current (2012) scenario. The figure below shows a schematic layout of the junction.

7.2 2017 - Traffic with proposed new development

Table 5, Table 6 and Table 7 shows a summary of the operational performance analysis for the existing signalized intersection at Sandkraal Road and the new T-junction from the new filling station for the AM and PM peak hours. The background traffic and the generation of the new filling station of the proposed development were used in the analysis.

Table 5: 2017 Operational performance: Sandkraal Road signalized intersection for the AM & PMpeak hours

		A	M PEAK HOU	IR	Р	M PEAK HOU	R
APPROACH	MOVEMENT	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO
Sandkraal	Left	С	22.3	0.761	В	19.2	0.519
from N2	Through	В	14.1	0.761	В	11.0	0.519
(South)	Right	С	32.8	1.00	D	37.9	0.631
	Left	E	55.7	0.889	С	25.0	0.357
Main Street	Through	D	47.5	0.889	В	16.8	0.357
(East)	Right	E	55.6	0.889	С	24.9	0.357
Sandkraal	Left	В	16.6	0.152	В	17.8	0.312
from George	Through	В	10.6	0.463	С	21.3	0.853
CBD	Right	D	37.8	0.244	С	23.7	0.113
Vuyani	Left	D	36.0	0.317	С	24.3	0.245
Street	Through	С	27.8	0.317	В	16.2	0.245
(West)	Right	D	36.1	0.317	С	24.4	0.245

The results indicate that the right turning lane from Sandkraal Road into Main Street will become saturated in the AM peak hour traffic. This is not acceptable for the 2017 scenario.

To mitigate this problem, an additional phase C (as demonstrated below) should be implemented. Minor changes to the signal heads will be required. The results is shown in the table below.

Table 6: 2017 Operational performance: Sandkraal Road signalized intersection with additionalphase for the AM & PM peak hours

		А	M PEAK HOU	R	Р	M PEAK HOU	R
APPROACH	MOVEMENT	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO
Sandkraal	Left	С	27.5	0.836	В	19.2	0.519
from N2	Through	В	19.3	0.836	В	11.0	0.519
(South)	Right	С	23.8	0.659	D	37.9	0.631
	Left	D	37.4	0.800	С	25.0	0.357
Main Street	Through	С	29.2	0.800	В	16.8	0.357
(East)	Right	D	37.3	0.800	С	24.9	0.357
Sandkraal	Left	С	26.3	0.266	В	17.8	0.312
from George	Through	С	27.1	0.811	С	21.3	0.853
CBD	Right	D	37.6	0.274	С	23.7	0.113
Vuyani	Left	С	28.2	0.270	С	24.3	0.245
Street	Through	С	20.1	0.270	В	16.2	0.245
(West)	Right	С	28.3	0.270	С	24.4	0.245

	Dhace	0	•	В	
	Phase	C	A	В	
	Green Time (sec)	8	24	22	
	Yellow Time (sec)	4	3	3	
	All-Red Time (sec)	2	2	2	
	Phase Time (sec)	14	29	27	
	Phase Split	20%	41%	39%	
hase C	Phase A			Phase B	
	Main Street		Main Street	Vuyani Street	
Sandkraal fre	bern N2	idkraal from N2	Hain Street	vuyani Stereet	aal from N2.
Sandkraal fro	Normal Movement	idkraal from Nž	Per	mitted/Oppose	aal from N2
	Normal Movement Slip-Lane Movement	idkraal from NZ	Per Opp	mitted/Oppose	aal from N2
Sandkraal fre	Normal Movement Slip-Lane Movement Stopped Movement	idkraal from N2	Per Opp	mitted/Oppose posed Slip-Land	ed e ment
Sandkraal fro	Normal Movement Slip-Lane Movement Stopped Movement Turn On Red	idkraal from N2	Per Opp Cor	mitted/Oppose bosed Slip-Land ntinuous Mover detected Mover	ed e ment ment

Table	7: 2017	Operational	performance:	Main	Street /	Filling	station	junction	for the	AM &	· PM
peak h	ours										

			АМ РЕАК НО	UR	I	PM PEAK HOU	JR
APPROACH	MOVEMENT	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO	LEVEL OF SERVICE (LOS)	AVERAGE DELAY (seconds)	VOLUME/ CAPACITY RATIO
Filling Station	Left	В	10.7	0.071	В	10.2	0.056
(South)	Right	В	10.7	0.071	В	10.1	0.056
Main Street	Left	А	8.2	0.203	А	8.2	0.099
(East)	Through	А	0	0.203	А	0	0.099
Main Street	Through	А	0	0.145	А	0	0.176
(West)	Right	А	9.8	0.038	A	9.0	0.044

From the results it is evident that the junction will operate at an acceptable level for both the AM and PM peak hour for the future (2017) scenario. The proposed right turning lane is designed to be 12m to provide space for 2 standard passenger car vehicles or 1 heavy vehicle. Future queue lengths at the right turning lane out of Main Street are calculated to be 1.8m therefore the designed 12m will be sufficient. The figure below shows a schematic layout of the junction.

8 Summary and Recommendations

During the 2012 weekly AM and PM peak hour traffic, 106 and 88 trips respectively will be generated.

During the 2017 weekly AM and PM peak hour traffic, 122 and 100 trips respectively will be generated.

Two access points is proposed from the development to Main Street and Golf Street.

Taking into account the traffic counts, the development proposal and analysis results the following recommendations are suggested:

- A turning lane with 12m storage length be constructed on the western approach of Main Street.
- A stop line (RTM 1) should be painted and stop sign (R1) be erected at the access junction with Main and Golf Street.
- To mitigate the right turning saturation problem that will occur from Sandkraal Road into Main Street in the AM peak hour traffic, an additional phase should be implemented within the cycle. Minor changes to the signal heads will be required.

Figure 6 in ANNEXURE A will give a graphical summary of the above recommendations.

Author: R. Stander (B Tech Eng) Reviewer: H. Maart (Pr Tech Eng, MEng , BSc Hons)

9 Bibliography

- 1. Department of Transport, **Manual for Traffic Impact Studies**, Pretoria, 1995.
- Committee of Urban Transport Authorities, Geometric Design of Urban Collector Roads, Draft UTG 5, Pretoria, South Africa, 1988.
- Department of Transport, South African Trip Generation Rates, 2nd Edition, Pretoria, 1995.
- 4. Akcelik & Associates, **SIDRA 5.1**, Australia, 1990

ANNEXURE A

FIGURES

- FIGURE 1: LOCALITY AND SITE PLAN
- FIGURE 2: PROPOSED DEVELOPMENT
- FIGURE 3: 2012 AM & PM PEAK HOUR TRAFFIC WITH DEVELOPMENT
- FIGURE 4: TRIP GENERTAION AND DISTRIBUTION
- FIGURE 5: 2017 A.M. AND P.M. PEAK HOUR TRAFFIC WITH DEVELOPMENT
- FIGURE 6: PROPOSED RECOMMENDATIONS

ANNEXURE B

TRAFFIC VOLUMES

• SANDKRAAL ROAD – 12 HOUR WEEKDAY COUNT

	je j													
							KWARTIER 1	/OLUMES						
CWARTIER	Sandkraalwe	g vanaf Georg NOORD	e SSK	Mainstraat vanaf P	arkdene OOS		Sandkraalweg	vanaf Them SUID	balethu	Vuyani Ncamaza	nastraat vanag WES	J L/kamp	TOTAAL	BEW. UUR
	Links	Deur	Regs	Links	Deur	Regs	Links	Deur	Regs	Links	Deur	Regs		NOLUMI
06h15	11	45	2	12	2	6	2	35	16	0	0	2	136	
06h30 06h45	12	42	2	16 22	4 O	24	8	56	6 α	01 +	4 u	8 14	197 374	
00420	20	56	ით	1 2	10	21	16	117	14	- 4	- -	cu 1	285	992
07h15	30 30	108	7 51	21	o o	51	12	168	29	4 03	4 4	14	451 612	1307
07h45	32	125	2 00	3 m	15	37	16	135	22	- 42	9 0	13	411	1759
08h00	41	71	4	4 0	~ 0	25	0 1	65	4	<i>с</i> о (~ ~	18	219	1693
08480	19 27	22	2 10	טי פ	o io	21	- 4	62 83	CL 2	N 4	n 0	D 4	262	1103
08h45	19	130	80	ε	0	17	7	25	80	4	۲ ا	0	263	955
09400	12	62	ωu	~	~ ~	1	თ ი	32	01	-	u .	т с	165	901
08460	19	0/ 87	n co	4 W	v ←	2	2 5	37	4 4		4 0	n 0	180	839
09h45	16	89	3	ŝ	e	2	S	49	7	0	0	-	176	752
10h00	8	71 96	2 10	no a	~ ~	σα	4 %	37	4 6	с с С	6 4	τ α	149 234	736
10h30	18	11	9 9	7	4	10	0 0	46	a a	101	-	0 ო	181	740
10h45	22	56	N 0	7 0	~ ~	202	<i>с</i> о с	57	N +	0 0	4 0	~ ~	174	766
11h15	15	61		0 00	4 -	17	4 00	83	- ∞	10	C	. ~	211	743
11h30	4 ;	87	5	13	0 +	ω ,	m ◄	84 65	4 0	α c	Ω₹	5	240	802
12h00	21	2 23	- 0	9	- 0	10	t - -	22	ດເດ	o –	t თ	4	187	845
12h15	23	24	0	4	Q	17	2	63	4	0	8	e	147	781
12h30	22 8	166	12	6 6	9 0	13	00	69 66	4 C	- c	~ ~	t3	314	855
13h00	15	88		9 9	1 -	12	റ ന	88	o m	00	ით	0 00	235	888
13h15	6 6	88 99	~	4 (4 0	24	4 .	104	1	← (4 0	258	666
13h45	25	21	» ₽	0 0	00	4	4 0	6 14	16	0 -	4 1-	16	821	896
14h00	16	81	7	8	4	21	2	73	2	5	0	6	230	891
14h15	17	69	~ 0	0 0		9 0	~ ~	47	ი ფ	0 +	- 0	9 7	200	783
14h45	28	66	o io	12	• •	18	14	18	o o	0	1 0	0	262	867
15h00	23	78	4	15	4	22	8	83	2	4	-	80	246	883
15h15	25 16	89	4 0	5 4	4 0	15	0 0	88	6 0	1	01 0	18	281	866
15h45	23	21	9 9	r co	0 0	13	o vo	101	1	0 M	9 4	12	261	866
16h00	20	62	9	2	4	16	-	9/	S	4	6	ŝ	227	616
16h15 16h30	35	133	00 LC	9 10	4 12	20	- vc	107	ლი ლი	00	4 03	20	335 311	1033
16h45	35	114	2	13	3	20	4	100	7	÷	4	13	321	1194
17h00	51	166	10	14	-	4	9	100	8	2	4	11	377	1344
17h15	41	158	u a	21	0 0	35	n o	124	20	← C	01 0	19	433	1442
17h45	61	126	~	12	4 4	19	0 F	103	2 თ	o ←	ით	53	372	1592
18h00	35	108	80	7	2	12	2	72	7	2	3	14	271	1486

-

ANNEXURE C

SIDRA RESULTS

- SANDKRAAL ROAD / MAIN STREET, 2012, AM (signalized junction)
- SANDKRAAL ROAD / MAIN STREET 2012, PM (signalized junction)
- MAIN STREET / FILLING STATION, 2012, AM (priority / stop junction)
- MAIN STREET / FILLING STATION, 2012, PM (priority / stop junction)
- SANDKRAAL ROAD / MAIN STREET, 2017, AM (signalized junction)
- SANDKRAAL ROAD / MAIN STREET 2017, AM (signalized junction)
 WITH ADDITIONAL PHASE
- SANDKRAAL ROAD / MAIN STREET 2017, PM (signalized junction)
- MAIN STREET / FILLING STATION, 2017, AM (priority / stop junction)
- MAIN STREET / FILLING STATION , 2017, PM (priority / stop junction)

Four-way intersection with 2 & 3-lane approaches (Signals)

Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Moven	nent Per	formance - V	/ehicles	AT THE A	A Starting	Service Pro-			al states	A State State State	
Mov ID	Turn	Demand Flow	HV %	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	Sandkraa	I from N2	70	V/C	260		Ven			per ven	MILITI
1	L	71	0.0	0.782	24.0	LOS C	20.5	143.6	0.88	0.97	38.4
2	т	706	0.0	0.782	15.8	LOS B	20.5	143.6	0.88	0.85	39.2
3	R	111	0.0	0.725	30.2	LOS C	2.9	20.6	0.77	0.90	32.7
Approa	ch	887	0.0	0.782	18.2	LOS B	20.5	143.6	0.87	0.87	38.2
East: M	ain Street	t									
4	L	86	0.0	0.631	27.2	LOS C	8.5	59.4	0.90	0.85	34.6
5	т	44	0.0	0.631	19.0	LOS B	8.5	59.4	0.90	0.77	35.2
6	R	199	0.0	0.631	27.1	LOS C	8.5	59.4	0.90	0.84	34.6
Approa	ch	329	0.0	0.631	26.0	LOS C	8.5	59.4	0.90	0.84	34.7
North: S	Sandkraal	from George	CDB								
7	L	145	0.0	0.156	17.0	LOS B	2.3	16.2	0.57	0.75	40.9
8	Т	467	0.0	0.479	10.7	LOS B	9.1	63.6	0.70	0.61	44.0
9	R	38	0.0	0.191	32.2	LOS C	1.0	7.1	0.88	0.74	31.7
Approa	ch	651	0.0	0.479	13.4	LOS B	9.1	63.6	0.68	0.65	42.3
West: V	uyani Stre	eet									
10	L	21	0.0	0.198	24.1	LOS C	1.9	13.4	0.75	0.77	36.3
11	Т	15	0.0	0.198	15.9	LOS B	1.9	13.4	0.75	0.60	37.8
12	R	53	0.0	0.198	24.1	LOS C	1.9	13.4	0.75	0.78	36.3
Approad	ch	88	0.0	0.198	22.7	LOS C	1.9	13.4	0.75	0.75	36.6
All Vehi	cles	1956	0.0	0.782	18.1	LOS B	20.5	143.6	0.81	0.79	38.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	53	21.7	LOS C	0.1	0.1	0.85	0.85				
P3	Across E approach	53	10.2	LOS B	0.1	0.1	0.58	0.58				
P5	Across N approach	53	24.3	LOS C	0.1	0.1	0.90	0.90				
P7	Across W approach	53	10.2	LOS B	0.1	0.1	0.58	0.58				
All Pede	estrians	212	16.6	LOS B			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 02 April 2012 11:21:52 AM SIDRA INTERSECTION 5.1.3.1990 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip

8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

Four-way intersection with 2 & 3-lane approaches (Signals)

Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Movem	ent Pe	rformance - V	/ehicles	8 10 St			and Mary Sta	R. Philippen	State State	\$1763 - 3M	STREET, STR
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	Sandkraa	al from N2									
1	L	20	0.0	0.447	18.7	LOS B	8.5	59.2	0.69	0.93	41.8
2	Т	425	0.0	0.447	10.5	LOS B	8.5	59.2	0.69	0.60	44.1
3	R	63	0.0	0.501	31.5	LOS C	1.7	11.9	0.88	0.78	32.0
Approac	ch	508	0.0	0.501	13.4	LOS B	8.5	59.2	0.71	0.63	42.1
East: Ma	ain Stree	et									
4	L	71	0.0	0.306	24.6	LOS C	3.7	25.7	0.78	0.79	35.9
5	Т	11	0.0	0.306	16.4	LOS B	3.7	25.7	0.78	0.64	37.1
6	R	83	0.0	0.306	24.5	LOS C	3.7	25.7	0.78	0.79	35.9
Approac	ch	164	0.0	0.306	24.0	LOS C	3.7	25.7	0.78	0.78	36.0
North: S	andkraa	I from George	CDB								
7	L	249	0.0	0.269	17.6	LOS B	4.2	29.7	0.61	0.77	40.4
8	Т	717	0.0	0.735	13.8	LOS B	17.4	121.5	0.85	0.78	41.1
9	R	34	0.0	0.085	22.0	LOS C	0.7	4.7	0.68	0.73	37.3
Approac	h	1000	0.0	0.735	15.0	LOS B	17.4	121.5	0.79	0.78	40.8
West: Vi	uyani Sti	reet									
10	L	4	0.0	0.206	24.1	LOS C	2.1	14.6	0.75	0.77	36.3
11	т	14	0.0	0.206	15.9	LOS B	2.1	14.6	0.75	0.60	37.7
12	R	79	0.0	0.206	24.2	LOS C	2.1	14.6	0.75	0.78	36.2
Approac	h	97	0.0	0.206	23.0	LOS C	2.1	14.6	0.75	0.75	36.4
All Vehic	cles	1769	0.0	0.735	15.8	LOS B	17.4	121.5	0.76	0.74	40.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P1	Across S approach	53	21.7	LOS C	0.1	0.1	0.85	0.85			
P3	Across E approach	53	10.2	LOS B	0.1	0.1	0.58	0.58			
P5	Across N approach	53	24.3	LOS C	0.1	0.1	0.90	0.90			
P7	Across W approach	53	10.2	LOS B	0.1	0.1	0.58	0.58			
All Ped	estrians	212	16.6	LOS B			0.73	0.73			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 02 April 2012 11:26:34 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.1990 www.sidrasolutions.com Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip 8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

Three-way intersection with 2-lane major road (Stop control) Stop (Two-Way)

Movem	ent Per	formance - V	ehicles	- alar party		and the second	Shart Brief			All Martin	10. 7 10
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	illing stat	tion									
1	L	24	0.0	0.055	10.2	LOS B	0.2	1.4	0.45	0.84	19.9
3	R	20	0.0	0.055	10.1	LOS B	0.2	1.4	0.45	0.96	19.8
Approac	:h	44	0.0	0.055	10.1	LOS B	0.2	1.4	0.45	0.90	19.8
East: Ma	ain Street	E.						-			
4	L	32	0.0	0.175	8.2	LOS A	0.0	0.0	0.00	1.03	49.0
5	Т	308	0.0	0.175	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	:h	340	0.0	0.175	0.8	NA	0.0	0.0	0.00	0.10	58.8
West: M	ain Stree	et									
11	Т	244	0.0	0.125	0.0	LOS A	. 0.0	0.0	0.00	0.00	60.0
12	R	24	0.0	0.032	9.5	LOS A	0.1	0.5	0.40	0.65	47.1
Approac	h	268	0.0	0.125	0.9	NA	0.1	0.5	0.04	0.06	58.6
All Vehic	les	653	0.0	0.175	1.4	NA	0.2	1.4	0.05	0.13	57.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 02 April 2012 11:29:23 AM SIDRA INTERSECTION 5.1.3.1990 Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip

8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

Three-way intersection with 2-lane major road (Stop control) Stop (Two-Way)

Movem	ent Per	formance - V	ehicles	A second	and the second second	and the	Res I all	SPACE AND	1 4 A - W	Art at	
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	illing stat	tion									
1	L	13	0.0	0.044	9.7	LOS A	0.2	1.1	0.36	0.80	20.1
3	R	24	0.0	0.044	9.7	LOS A	0.2	1.1	0.36	0.94	20.0
Approac	h	37	0.0	0.044	9.7	LOS A	0.2	1.1	0.36	0.89	20.1
East: Ma	ain Street	t.									
4	L	15	0.0	0.086	8.2	LOS A	0.0	0.0	0.00	1.03	49.0
5	Т	152	0.0	0.086	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	166	0.0	0.086	0.7	NA	0.0	0.0	0.00	0.09	58.8
West: M	ain Stree	t									
11	Т	296	0.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
12	R	31	0.0	0.037	8.9	LOS A	0.1	0.6	0.27	0.63	47.6
Approac	h	326	0.0	0.152	0.8	NA	0.1	0.6	0.03	0.06	58.6
All Vehic	les	529	0.0	0.152	1.4	NA	0.2	1.1	0.04	0.13	57.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 02 April 2012 11:30:33 AM SIDRA INTERSECTION 5.1.3.1990

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.3.1990 www.sidrasolutions.com
Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip 8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

Four-way intersection with 2 & 3-lane approaches (Signals)

Signals - Fixed Time Cycle Time = 90 seconds (Practical Cycle Time)

Moven	nent Pe	rformance - \	Vehicles	学生の	Later Market	C. Barris	1. 18 5	Her Balance	Andreas Starting	加加までの場	the set of
Mov ID	Turn	Demand Flow veh/ <u>h</u>	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	Sandkraa	al from N2									
1	L	82	0.0	0.761	22.3	LOS C	29.1	203.4	0.80	0.94	39.2
2	Т	824	0.0	0.761	14.1	LOS B	29.1	203.4	0.80	0.73	40.6
3	R	123	0.0	1.000 ³	32.8	LOS C	3.6	25.3	0.95	0.82	31.4
Approad	ch	1029	0.0	1.000	17.0	LOS B	29.1	203.4	0.82	0.76	39.1
East: M	ain Stree	et									
4	L	100	0.0	0.889	55.7	LOS E	20.3	142.1	1.00	1.03	23.8
5	т	55	0.0	0.889	47.5	LOS D	20.3	142.1	1.00	1.03	23.9
6	R	231	0.0	0.889	55.6	LOS E	20.3	142.1	1.00	1.03	23.9
Approac	ch	385	0.0	0.889	54.4	LOS D	20.3	142.1	1.00	1.03	23.9
North: S	Sandkraa	I from George	CDB								
7	L	169	0.0	0.152	16.6	LOS B	3.2	22.6	0.47	0.74	41.2
8	т	542	0.0	0.463	10.6	LOS B	13.1	91.4	0.60	0.53	44.4
9	R	44	0.0	0.244	37.8	LOS D	1.6	11.3	0.82	0.77	29.3
Approad	ch	756	0.0	0.463	13.5	LOS B	13.1	91.4	0.58	0.59	42.4
West: V	uyani St	reet									
10	L	24	0.0	0.317	36.0	LOS D	3.6	25.4	0.82	0.79	30.3
11	т	17	0.0	0.317	27.8	LOS C	3.6	25.4	0.82	0.67	31.1
12	R	61	0.0	0.317	36.1	LOS D	3.6	25.4	0.82	0.80	30.3
Approac	ch	102	0.0	0.317	34.7	LOS C	3.6	25.4	0.82	0.78	30.4
All Vehic	cles	2273	0.0	1.000	23.0	LOS C	29.1	203.4	0.77	0.75	35.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	53	31.3	LOS D	0.1	0.1	0.83	0.83				
P3	Across E approach	53	9.3	LOS A	0.1	0.1	0.46	0.46				
P5	Across N approach	53	33.8	LOS D	0.1	0.1	0.87	0.87				
P7	Across W approach	53	9.3	LOS A	0.1	0.1	0.46	0.46				
All Pede	estrians	212	20.9	LOS C			0.65	0.65				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Four-way intersection with 2 & 3-lane approaches (Signals)

Signals - Fixed Time Cycle Time = 70 seconds (Practical Cycle Time)

Movem	nent Per	formance - '	Vehicles	ALL ALL		State State	AND CAPE			Statistics of	the state
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km <u>/h</u>
South: S	Sandkraa	al from N2									
1	L	82	0.0	0.836	27.5	LOS C	29.5	206.7	0.90	1.00	36.2
2	Т	819	0.0	0.836	19.3	LOS B	29.5	206.7	0.90	0.91	36.8
3	R	128	0.0	0.659	23.8	LOS C	2.5	17.2	0.89	0.81	36.2
Approad	ch	1029	0.0	0.836	20.5	LOS C	29.5	206.7	0.90	0.90	36.7
East: M	ain Stree	et									
4	L	100	0.0	0.800	37.4	LOS D	13.9	97.3	0.98	0.95	29.8
5	Т	55	0.0	0.800	29.2	LOS C	13.9	97.3	0.98	0.94	30.0
6	R	231	0.0	0.800	37.3	LOS D	13.9	97.3	0.98	0.95	29.8
Approad	ch	385	0.0	0.800	36.2	LOS D	13.9	97.3	0.98	0.95	29.8
North: S	Sandkraa	I from George	CDB								
7	L	169	0.0	0.266	26.3	LOS C	4.2	29.7	0.76	0.78	34.8
8	Т	542	0.0	0.811	27.1	LOS C	19.0	133.1	0.97	0.95	32.6
9	R	44	0.0	0.274	37.6	LOS D	1.4	10.0	0.91	0.76	29.4
Approad	ch	756	0.0	0.811	27.6	LOS C	19.0	133.1	0.92	0.90	32.9
West: V	uyani Str	reet									
10	L	24	0.0	0.270	28.2	LOS C	2.7	19.0	0.79	0.79	34.0
11	т	17	0.0	0.270	20.1	LOS C	2.7	19.0	0.79	0.64	35.1
12	R	61	0.0	0.270	28.3	LOS C	2.7	19.0	0.79	0.79	34.0
Approad	ch	102	0.0	0.270	26.9	LOS C	2.7	19.0	0.79	0.76	34.1
All Vehi	cles	2273	0.0	0.836	25.8	LOS C	29.5	206.7	0.92	0.91	33.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	53	24.9	LOS C	0.1	0.1	0.84	0.84				
P3	Across E approach	53	18.6	LOS B	0.1	0.1	0.73	0.73				
P5	Across N approach	53	27.5	LOS C	0.1	0.1	0.89	0.89				
P7	Across W approach	53	18.6	LOS B	0.1	0.1	0.73	0.73				
All Pede	estrians	212	22.4	LOS C			0.80	0.80				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 25 April 2012 02:42:51 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.1990 www.sidrasolutions.com Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip

8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

-

SIDRA

INTERSECTION

Four-way intersection with 2 & 3-lane approaches (Signals)

Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Movem	ent Per	formance - V	/ehicles		The Assessment	a state of	and the second	No.	and the state		AND STATI
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	Sandkraa	al from N2									
1	L	23	0.0	0.519	19.2	LOS B	10.3	72.2	0.72	0.93	41.5
2	т	494	0.0	0.519	11.0	LOS B	10.3	72.2	0.72	0.63	43.6
3	R	74	0.0	0.631	37.9	LOS D	2.3	15.8	0.96	0.83	29.3
Approac	h	591	0.0	0.631	14.7	LOS B	10.3	72.2	0.75	0.67	41.0
East: Ma	ain Stree	et									
4	L	79	0.0	0.357	25.0	LOS C	4.3	30.4	0.80	0.80	35.7
5	т	14	0.0	0.357	16.8	LOS B	4.3	30.4	0.80	0.66	36.9
6	R	98	0.0	0.357	24.9	LOS C	4.3	30.4	0.80	0.80	35.7
Approac	:h	191	0.0	0.357	24.3	LOS C	4.3	30.4	0.80	0.79	35.8
North: S	andkraa	I from George	CDB								
7	L	289	0.0	0.312	17.8	LOS B	5.1	35.4	0.63	0.78	40.2
8	Т	832	0.0	0.853	21.3	LOS C	26.1	182.7	0.94	0.99	35.8
9	R	39	0.0	0.113	23.7	LOS C	0.8	5.8	0.72	0.74	36.2
Approac	:h	1160	0.0	0.853	20.5	LOS C	26.1	182.7	0.86	0.93	36.8
West: Vi	uyani Str	reet									
10	L	5	0.0	0.245	24.3	LOS C	2.5	17.3	0.76	0.78	36.1
11	т	16	0.0	0.245	16.2	LOS B	2.5	17.3	0.76	0.62	37.5
12	R	92	0.0	0.245	24.4	LOS C	2.5	17.3	0.76	0.79	36.1
Approac	h	113	0.0	0.245	23.3	LOS C	2.5	17.3	0.76	0.76	36.3
All Vehic	cles	2054	0.0	0.853	19.3	LOS B	26.1	182.7	0.82	0.83	37.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	53	21.7	LOS C	0.1	0.1	0.85	0.85				
P3	Across E approach	53	10.2	LOS B	0.1	0.1	0.58	0.58				
P5	Across N approach	53	24.3	LOS C	0.1	0.1	0.90	0.90				
P7	Across W approach	53	10.2	LOS B	0.1	0.1	0.58	0.58				
All Ped	estrians	212	16.6	LOS B			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 25 April 2012 02:45:58 PM SIDRA INTERSECTION 5.1.3.1990 Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip

Three-way intersection with 2-lane major road (Stop control) Stop (Two-Way)

Movem	ent Per	formance - V	/ehicles		Ser Martin	Section.	and the		1.5.98	in The St	1. 1. 1.
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	illing sta	tion									
1	L	28	0.0	0.071	10.7	LOS B	0.3	1.8	0.49	0.86	19.3
3	R	23	0.0	0.071	10.7	LOS B	0.3	1.8	0.49	0.99	19.3
Approach		52	0.0	0.071	10.7	LOS B	0.3	1.8	0.49	0.92	19.3
East: Ma	ain Stree	t									
4	L	37	0.0	0.203	8.2	LOSA	0.0	0.0	0.00	1.03	49.0
5	Т	358	0.0	0.203	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approach		395	0.0	0.203	0.8	NA	0.0	0.0	0.00	0.10	58.8
West: M	ain Stree	et									
11	Т	283	0.0	0.145	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
12	R	28	0.0	0.038	9.8	LOS A	0.1	0.7	0.44	0.67	47.0
Approach		312	0.0	0.145	0.9	NA	0.1	0.7	0.04	0.06	58.5
All Vehicles		758	0.0	0.203	1.5	NA	0.3	1.8	0.05	0.14	57.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 02 April 2012 12:02:54 PM SIDRA INTERSECTION 5.1.3.1990 Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.1990 www.sidrasolutions.com
Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts/Filling Station.sip 8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

Three-way intersection with 2-lane major road (Stop control) Stop (Two-Way)

Movem	ent Per	formance - V	ehicles	and the second	Carl Solar St	· Safrada	in the second	A STATE OF	Destant and	and the state	HE WILL
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	illing sta	tion									
1	L	15	0.0	0.056	10.2	LOS B	0.2	1.4	0.40	0.80	19.7
3	R	28	0.0	0.056	10.1	LOS B	0.2	1.4	0.40	0.96	19.6
Approac	h	43	0.0	0.056	10.2	LOS B	0.2	1.4	0.40	0.90	19.6
East: Ma	ain Street	t									
4	L	17	0.0	0.099	8.2	LOS A	0.0	0.0	0.00	1.03	49.0
5	Т	176	0.0	0.099	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach		193	0.0	0.099	0.7	NA	0.0	0.0	0.00	0.09	58.8
West M	ain Stree	et									
11	Т	343	0.0	0.176	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
12	R	36	0.0	0.044	9.0	LOS A	0.1	0.7	0.29	0.63	47.5
Approac	h	379	0.0	0.176	0.9	NA	0.1	0.7	0.03	0.06	58.6
All Vehicles		615	0.0	0.176	1.5	NA	0.2	1.4	0.04	0.13	57.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: 02 April 2012 12:03:44 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.1990 www.sidrasolutions.com Project: P:\1_Current Projects\VKE1154_C1356 TIA for filling station, Erf 11221, George\3_Working\3-6_Traffic Counts\Filling Station.sip

SIDRA

8000113, VELA VKE CONSULTING ENGINEERS, FLOATING

13 Progress Street George 6529, South Anica IPO Box 10623, George 6530, South Anica) T +27 44 573 5029 F +27 44 573 5086 www.smec.com j www.velavke.co.za

29 August 2012

VKE1154.C1356/5647 H MAART/da

Mr Claude Madell George Municipality P.O. Box 19 GEORGE

6530

Dear Sir

TRAFFIC IMPACT STUDY FOR FILLING STATION DEVELOPMENT ON ERF 11221, GEORGE

Please receive the above Traffic Impact Statement dated March 2012 for your comment/approval.

Also find attached a letter dated 6 July 2012 from the Western Cape Government (Transport and Public Works).

This letter states that Main Street is a Proclaimed Provincial Minor Road 6886.

Options are listed under points 4 and 5 of the letter, that George Municipality should follow to rectify the current situation.

We trust that this information will be sufficient for you to address this matter.

Kind regards

Henry Maart (Pr Tech Eng) Vela VKE (Part of the SMEC Group)