

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS IN THE MOSSEL BAY LOCAL MUNICIPALITY

TRAFFIC IMPACT ASSESSMENT

PROJECT NO: J012/627-3 JUNE 2021

199 Silver Oak Avenue WATERKLOOF 0181 P O Box 2731 BROOKLYN SQUARE 0075 Tel: + 27 (12) 346 5336 Fax: 086 517 3132 e-mail: hsj@tiq.co.za

DOCUMENT CONTROL SHEET

PROJECT NAME	:	APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS IN THE MOSSEL BAY LOCAL MUNICIPALITY
DOCUMENT TITLE	:	TRAFFIC IMPACT ASSESSMENT
PROJECT NUMBER	:	J012/627-3

ORIGINAL	Dr H S Joubert Pr Eng	REGISTRATION ECSA: 790439	date JUNE 2021	
	NAME	REGISTRATION	DATE	

ADDENDUM			
REVISION	NAME	REGISTRATION	DATE

This report, information or advice which it contains, is provided by TECH IQ solely for internal use and reliance by its Client in performance of TECH IQ's duties and liabilities under its contract with the Client. Any advice, opinions, or recommendations within this report should be read and reliad upon only in the context of the report as a whole. The advice and opinions in this report are based upon the information made available to TECH IQ at the date of this report and on current South African standards, codes, technology and construction practices as at the date of this report. Following final delivery of this report to the Client, TECH IQ will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice provided in this report. This report has been prepared by TECH IQ in its professional capacity as Consulting Engineers. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion. This report is prepared in accordance with the terms and conditions of TECH IQ's contract with the Client. Regard should be had to those terms and conditions when considering and/or placing any reliance on this report. Should the Client wish to release this report to a Third Party for that party's reliance, TECH IQ may, at its discretion, agree to such release provided that:

i. TECH IQ's written agreement is obtained prior to such release

- ii. By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against TECH IQ and TECH IQ, accordingly, assume no duties, liabilities or obligations to that Third Party, and
- iii. TECH IQ accepts no responsibility for any loss or damage incurred by the Client or for any conflict of TECH IQ's interests arising out of the Client's release of this report to the Third Party.

199 Silver Oak Avenue WATERKLOOF 0181 P O Box 2731 BROOKLYN SQUARE 0075 Tel: + 27 (12) 346 5336 Fax: 086 517 3132 e-mail: hsj@tiq.co.za

DECLARATION OF TRAFFIC ENGINEER

RESPONSIBLE FOR THE REPORT

PROJECT NAME	:	Application for the rezoning and sub-division of Erf 3122 Hartenbos in the Mossel Bay Local Municipality
APPLICANT	:	Hartenbos Garden Estate (Contact Dr AJ Kruger)
COMPILATION OF REPORT	:	Dr H S Joubert PrEng, PhD Engineering, Pretoria

I, HERMANUS STEFANUS JOUBERT, author of this traffic impact study / statement, hereby certify that I am a professional traffic engineer (ECSA Registration Number 790439) and that I have the required experience and training in the field of traffic and transportation engineering, as required by the Engineering Council of South Africa (ECSA), to compile this traffic impact study / statement and I take full responsibility for the content, including all calculations, conclusions and recommendations made therein.

SIGNED AT PRETORIA ON 2021-06-11

DR H S JOUBERT

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS IN THE MOSSEL BAY LOCAL MUNICIPALITY

TRAFFIC IMPACT ASSESSMENT REPORT

CONTENTS

Chapter	Description	Page
1	HISTORIC OVERVIEW	1
2	LAND USE	5
3	TRAFFIC ANALYSIS	6
4	CAPACITY ANALYSIS	15
5	SITE TRAFFIC ASSESSMENT	19
6	CONCLUSION AND RECOMMENDATION	24

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS IN THE MOSSEL BAY LOCAL MUNICIPALITY

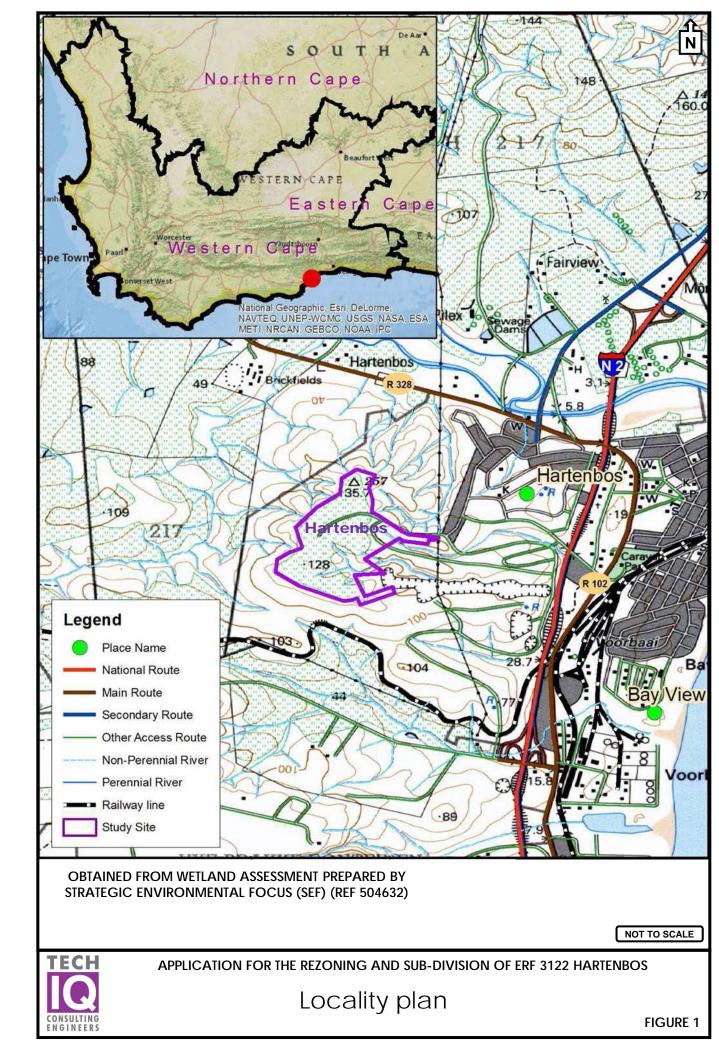
TRAFFIC IMPACT ASSESSMENT REPORT

JUNE 2021

1. HISTORIC OVERVIEW

A Traffic Impact Assessment (TIA) report (Tech IQ Consulting Engineers, Project No J012/627/2, Revision 1, May 2018) in respect of a proposed retirement estate on Erf 3122 Hartenbos in Mossel Bay, Western Cape, was accepted by the Roads and Stormwater Department of the Mossel Bay Local Municipality (2018-05-28).

A locality plan of the site is illustrated on Figure 1.


The Site Development Plan (SDP) of the development proposed in 2018 included the following land uses:

Residential erven (500m ² -700m ²)	187 dwelling units		
Residential erven (200m ²)	162 dwelling units		
Sectional title units at the medial centre	72 units		
Medical centre	600m² maximum		
Clubhouse and facilities for residents	1000m² maximum		

The development did not proceed and the land owners have now embarked on a renewed initiative to obtain approval for the proposed development and in the process have reviewed the composition of land uses that form part of the proposed development.

A copy of the sub-division plan is attached in Figure 2 and the land uses are indicated in the table below.

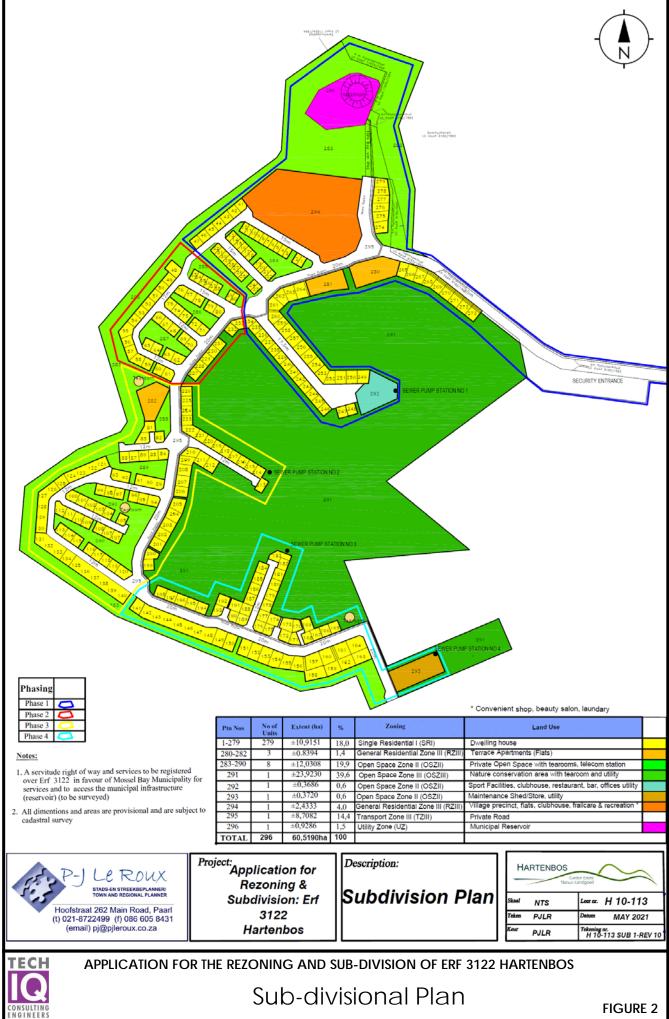


FIGURE 2

Single residential units Type 1 (200m ²)	40 dwelling units
Single residential units Type 2 (350-600m ²)	239 dwelling units
General residential zone (0.8394 ha)	54 terrace flats
Private open space with tea rooms and telecom station	12.0308 ha
Nature conservation area with tearoom and utility	23.9230 ha
Open space zone II with sport facilities, clubhouse, restaurant, bar, offices and utility	0.3686 ha
Maintenance shed / store, utility	0.3720 ha
General residential zone III with village precinct, flats, clubhouse, frail care and recreation (4.0 ha)	147 apartments 20 assisted living units 34 frail care units
Private road	14.4 ha
Utility zone for municipal reservoir	1.5 ha

In view of the amended number and type of residential units, a revision of the TIA is required, which forms the subject of this report.

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS

2. LAND USE

For the purpose of the traffic analysis, it is assumed that the amenities provided within the development would largely provide in the needs of residents and that these facilities are for the exclusive use of residents or their guests. Non-residential uses would not attract significant external traffic and the provision of amenities on site can be expected to reduce the need of residents to visit similar facilities elsewhere.

The trip generation of the development will be based on the sum of the trip generation of the various residential types within the development only, but on the other hand, no adjustment will be made for the potential reduction in the trip generation as a result of internal (mixed-use) trips.

ТҮРЕ	NUMBER
Townhouses	40
Single dwelling units (retirement)	239
Terrace flats	54
Apartment blocks (attached senior adult housing)	
1-bed	31
2-bed	96
3-bed	20
TOTAL	147
Assisted living	20
Frail care	34

The residential land uses are tabulated below.

3.1 Study Area

It was agreed with the Municipality that the study area should include the following intersections:

- Waboom Street and R328 (Route to N2 and Oudtshoorn)
- Boekenhout Avenue and Kameeldoring Avenue
- Kameeldoring Avenue and Geelhout Avenue
- Boekenhout Avenue and Louis Fourie Road.

3.2 Traffic Counts

It was agreed with the Municipality that, in view of the reduction in vehicle travel due to the Covid-19 pandemic, historic traffic counts should be used rather than to undertake traffic counts under current depressed traffic conditions.

No counts were available at the junction of Kameeldoring Avenue and Geelhout Avenue and traffic counts were undertaken during the AM and PM peak hours during May 2021. This is the intersection of two minor local residential access streets and as expected, traffic counts were insignificant.

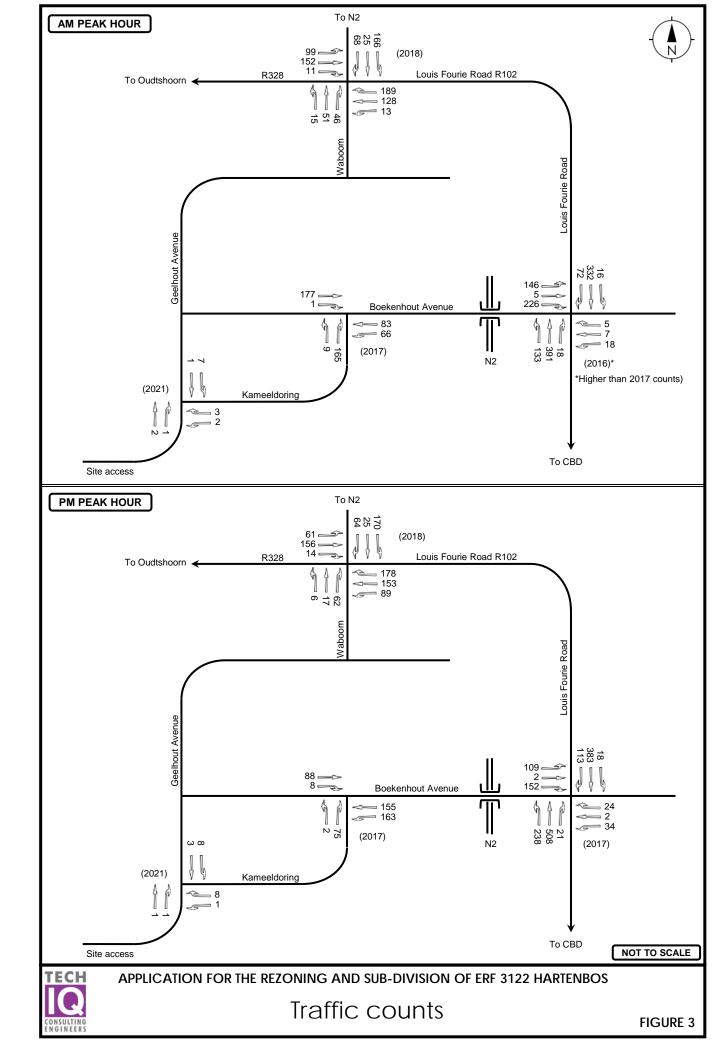
Traffic counts are illustrated on Figure 3.

3.3 Horizon Year

A five-year study period should be considered with 2021 as base year and 2026 as horizon year.

3.4 Background Traffic Growth

A growth rate of 4% p.a. was applied along Louis Fourie Road and R328 and a growth rate of 3% p.a. on residential streets. Background traffic growth was calculated for the period from the date of traffic counts to the horizon year at the appropriate traffic growth rate.


3.5 Latent Rights

The Municipality indicated that the following recent projects may impact on the traffic demand at intersections in the study area:

- Outeniquasbosch development (ITS, 2018)
- Renosterbos Estate (ITS, 2018)
- Rivierplaas, Ptn 36, Farm 217 Hartenbos (ITS, 2013).

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS

Copies of the most recent traffic impact study reports at the various intersections in the study area were obtained from ITS and the trip generation figures of the various projects were included in the traffic analysis as latent demand. Latent demand is illustrated on Figure 4.

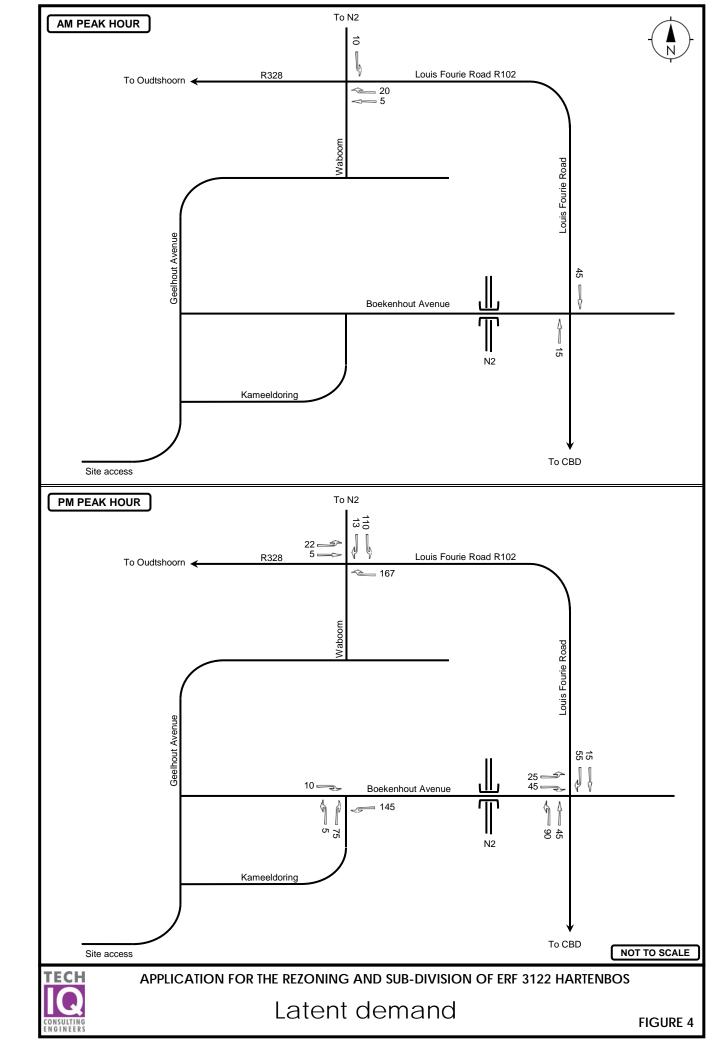
3.6 2026 Horizon year background traffic

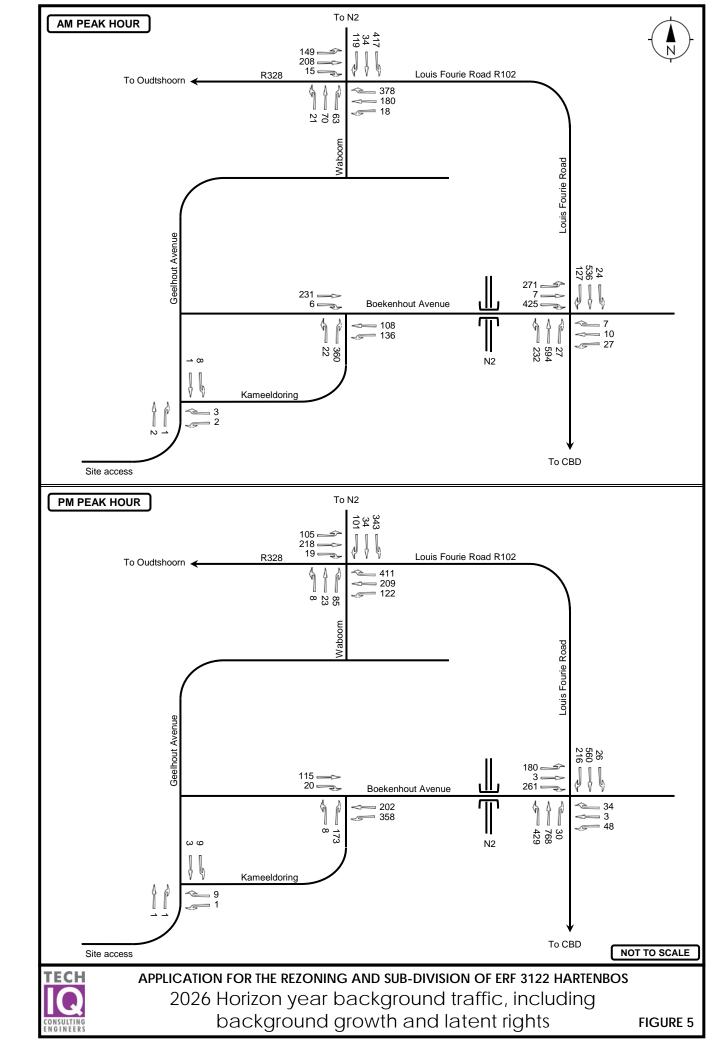
Latent traffic demand was added to the traffic counts and background traffic growth to determine the 2026 horizon year background traffic as shown in Figure 5.

3.7 Trip Distribution

Based on comments received from the Municipality and the trip distribution percentages applied in previous studies by Tech IQ and ITS in the area, the following trip distribution will be applied:

AREA / ROUTE	PERCENTAGE
Hartenbos area west of N2	5%
R328 Oudtshoorn	5%
R102 to Klein Brak and N2 eastbound and westbound	35%
Hartenbos east of N2	15%
Louis Fourie Road south of CBD	40%
TOTAL	100%


3.8 Trip Generation Rates


The following trip generation rates will be applied in the traffic analysis:

Single residential (both types)	TMH17, Land Use Code 251: Retirement Village			
General residential: Terrace apartments	TMH17, Land Use Code 251: Retirement Village			
General residential III: Flats	ITE, Trip Generation 7 th Edition, Land Use Code 252: Senior Adult Housing - Attached			
Assisted living units*	ITE, Trip Generation 7 th Edition, Land Use Code 254: Assisted Living			
Frail Care*	TMH17, Land Use Code 620: Nursing Home			

* It is assumed that 1Bed = 1 Unit

Trip generation parameters are tabulated below.

LAND USE	UNIT	PERIOD	RATE	SPLIT	
Retirement Village (251)	Dwelling unit	AM	0.35 / du	40:60	
		PM	0.35 / du	50:50	
Senior Adult Housing –	Dwelling unit	AM	0.08 / du	45:55	
Attached (252)		PM	0.11 / du	61:39	
Assisted living (254)	Unit (bed)	AM	0.14	65:35	
		PM	0.22	44:56	
Nursing home (620)	Unit (bed)	AM	0.20	70:30	
(Frail care)		PM	0.20	40:60	

No adjustment is applied for low vehicle ownership, mixed land use or public transport use and the above trip generation rates are assumed to make provision for all external travel to and from the retirement facilities, as well as ancillary and the subservient land uses.

3.9 Trip Generation Volumes

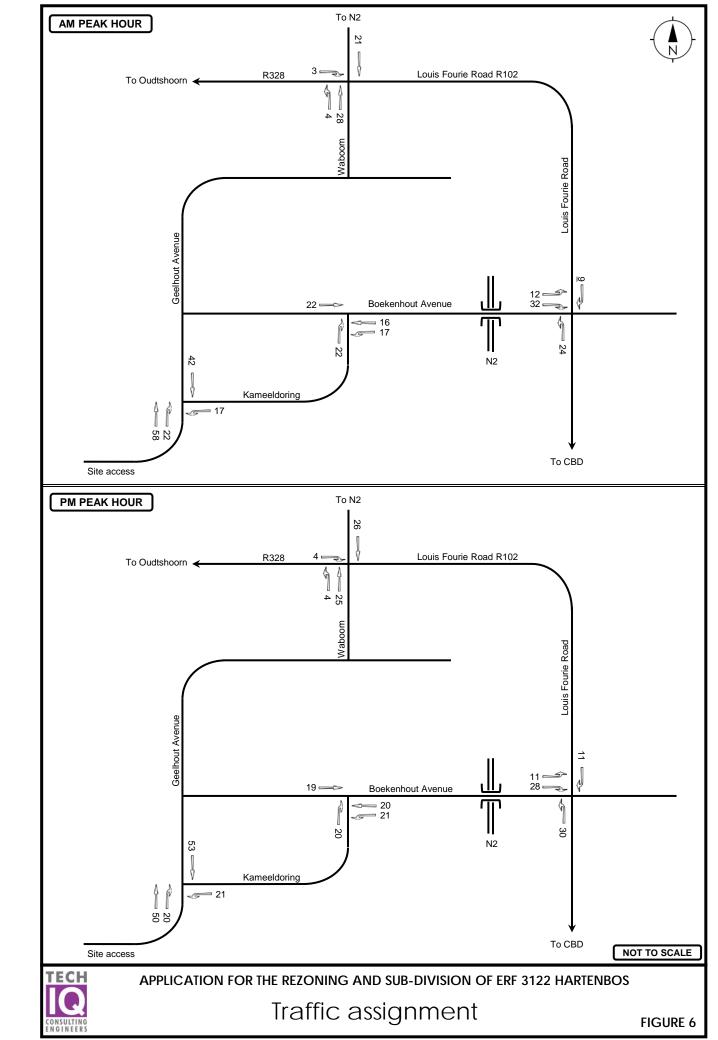
The trip generation of the proposed development is tabulated below.

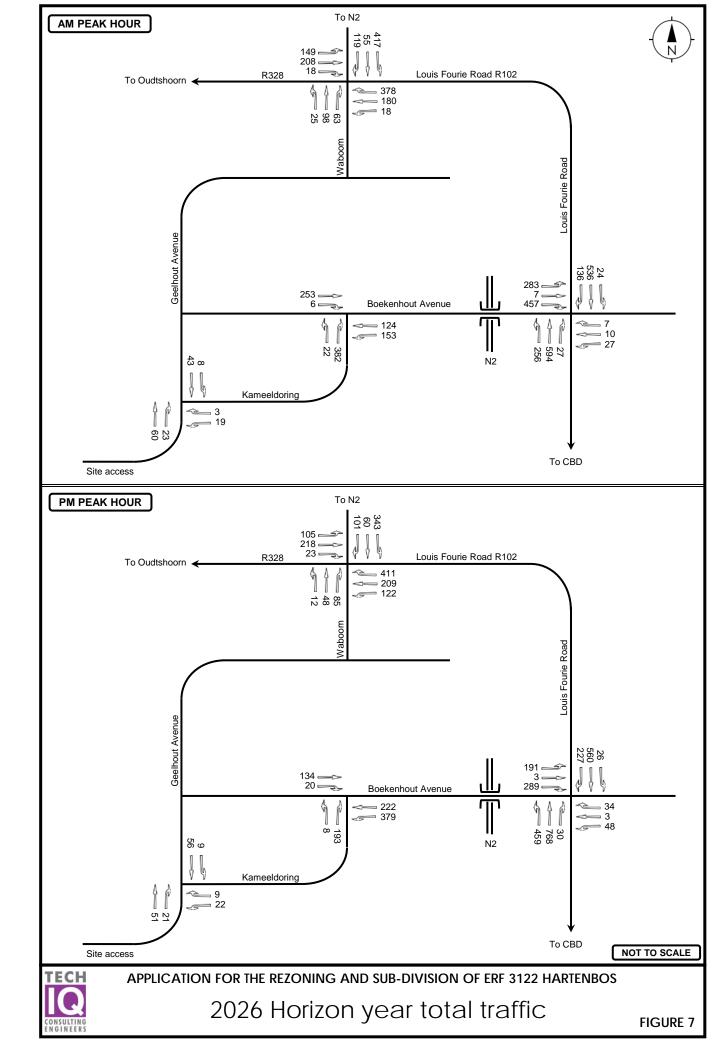
LAND USE AND RATE	AM PEAK HOUR		PM PEAK HOUR			
	IN	OUT	TOTAL	IN	OUT	TOTAL
Retirement Village (251) AM 333 @ 0.35 (40:60) PM 333 @ 0.35 (50:50)	47	70	117	59	58	117
Senior Adult – Attached (252) AM 147 @ 0.08 (45:55) PM 147 @ 0.11 (61:39)	5	7	12	10	6	16
Assisted living (254) AM 20 @ 0.14 (65:35) PM 20 @ 0.22 (44:56)	2	1	3	2	2	4
Nursing home (620) AM 34 @ 0.20 (70:30) PM 34 @ 0.20 (40:60)	5	2	7	3	4	7
TOTAL	59	80	139	74	70	144

The trip generation of the land use previously applied for and which was the basis of the previous Traffic Impact Study (Tech IQ Project No: J012/627/2 May 2018) was 148 trips during both the AM and PM peak hours, which is slightly more than the trip generation of the land use rights currently proposed.

3.10 Traffic Assignment

The assignment of generated traffic to the road network according to trip distribution percentages is illustrated on Figure 6.




3.11 Total Traffic Demand

The 2026 horizon year total traffic demand comprising observed traffic counts, growth in background traffic, latent land use rights and traffic generated by the proposed development is illustrated on Figure 7.

Annexure A includes the calculation of traffic growth and traffic assignment.

4. CAPACITY ANALYSIS

The capacity analysis at intersections in the study area was done by means of the SIDRA Intersection programme. Results are attached in Annexure B and discussed below.

4.1 Intersection of Kameeldoring Avenue and Geelhout Avenue

This T-junction is the intersection of two minor internal residential streets with one lane per direction.

INTERSECTION OF KAMEELDORING AVENUE AND GEELHOUT AVENUE: AM PEAK HHOUR											
APPROACH		AVERAGE	WO	RST							
	V/C	DELAY (s)	LOS	DELAY (s)	LOS						
South: Kameeldoring Ave	0.050	3.1	NA	3.1	A						
East: Kameeldoring Ave	0.011	1.0	В	13.0	В						
North: Geelhout Ave	0.290	1.3	NA	1.3	A						
TOTAL	0.050	4.4	NA								

The SIDRA results are summarised below.

INTERSECTIO	N OF KAMEELDO	ORING AVENUE AND	GEELHOUT AVE	NUE: PM PEAK HHOU	R	
APPROACH		AVERAGE	WOR	ST		
	V/C	DELAY (s)	LOS	DELAY (s)	LOS	
South: Kameeldoring Ave	0.043	3.3	NA	3.3	А	
East: Kameeldoring Ave	0.017	12.9	В	12.9	В	
North: Geelhout Ave	0.037	1.0	NA	1.0	А	
TOTAL	0.043	4.6	NA			

The results indicate that no upgrading is required at this intersection.

4.2 Intersection of Kameeldoring Avenue and Boekenhout Avenue

Both roads are local residential streets and do not carry long distance external though traffic. The intersection serves both the application property and the Renosterbos development and combined with background growth, the total traffic demand passing through the intersection is expected to almost double.

The SIDRA results are summarised below.

INTERSECTION OF KAMEELDORING AVENUE AND BOEKENHOUT AVENUE: AM PEAK HHOUR											
APPROACH		AVERAGE		WO	RST						
	V/C	DELAY (s)	LOS	DELAY (s)	LOS						
South: Kameeldoring Ave	0.336	15.3	С	15.3	С						
East: Boekenhout Ave	0.188	5.7	NA	5.7	A						
West: Boekenhout Ave	0.163	1.2	NA	1.2	A						
TOTAL	0.336	8.6	NA								

INTERSECTION OF KAMEELDORING AVENUE AND BOEKENHOUT AVENUE: PM PEAK HHOUR											
APPROACH		AVERAGE	WO	RST							
	V/C	DELAY (s)	LOS	DELAY (s)	LOS						
South: Kameeldoring Ave	0.196	158	С	15.8	С						
East: Boekenhout Ave	0.410	6.5	NA	6.5	A						
West: Boekenhout Ave	0.112	5.1	NA	5.1	A						
TOTAL	0.410	8.2	NA								

Results confirm the conclusion of ITS (Renosterbos TIA) that no improvements are required at the intersection. The proposed development adds only approximately 70 peak hour trips to the traffic demand at this junction.

4.3 Intersection of Louis Fourie Road and Boekenhout Avenue

Exclusive right turn lanes have been provided on all approaches to the signalised junction of Boekenhout Avenue and Louis Fourie Road.

The SIDRA analysis indicated that an exclusive left turn lane is required on the southern approach of Louis Fourie Road.

INTERSECTION OF LOUIS FOURIE ROAD AND BOEKENHOUT AVENUE: AM PEAK HHOUR											
APPROACH		AVERAGE	WO	RST							
	V/C	DELAY (s)	LOS	DELAY (s)	LOS						
South: Louis Fourie Road	0.862	21.5	С	37.4	D						
East: Boekenhout Avenue	0.147	30.7	С	32.3	С						
North: Louis Fourie Road	0.572	10.9	В	17.2	В						
West: Boekenhout Avenue	0.861	29.4	С	37.2	D						
TOTAL	0.862	21.4	С								

Results of the upgraded intersection are summarised below.

INTERSECTI	ON OF LOUIS FOU	RIE ROAD AND BO	EKENHOUT AVENU	JE: PM PEAK HHOU	R	
APPROACH		AVERAGE	WO	RST		
	V/C	DELAY (s)	LOS	DELAY (s)	LOS	
South: Louis Fourie Road	0.822	18.8	В	16.7	D	
East: Boekenhout Avenue	0.242	41.1	D	45.1	D	
North: Louis Fourie Road	0.515	10.3	В	16.3	В	
West: Boekenhout Avenue	0.528	30.1	С	34.6	С	
TOTAL	0.822	19.0	В			

Results confirm that with the construction of a left turn lane on the southern approach of Louis Fourie Road, the intersection will have sufficient capacity to provide an acceptable level of service in the 2026 horizon year.

4.4 Intersection of R328 and Waboom Street

The TIA for the Outeniquasbosch development (ITS, 2018) indicated the need to install traffic signal control at the intersection and to provide an exclusive right turn lane on Waboom Street. This conclusion was confirmed by the SIDRA analysis.

Results of the SIDRA analysis of the intersection, including the upgrades recommended for the Outeniquasbosch development and the 2026 horizon year total traffic demand are tabulated below.

	INTERSECTION OF R328 AND WABOOM STREET: AM PEAK HHOUR											
APPROACH		AVERAGE	WO	RST								
	V/C	DELAY (s)	LOS	DELAY (s)	LOS							
South: Waboom Street	0.406	22.2	С	28.2	С							
East: Louis Fourie Road	0.805	17.7	В	23.5	С							
North: R102	0.772	15.4	В	29.5	С							
West: R328	0.751	22.3	С	31.0	С							
TOTAL	0.805	18.4	В									

	INTERSECTION OF R328 AND WABOOM STREET: PM PEAK HHOUR											
APPROACH		AVERAGE	WO	RST								
	V/C	DELAY (s)	LOS	DELAY (s)	LOS							
South: Waboom Street	0.357	26.5	С	29.7	С							
East: Louis Fourie Road	0.758	16.0	В	21.2	С							
North: R102	0.721	15.4	В	27.8	С							
West: R328	0.744	22.0	С	31.0	С							
TOTAL	0.758	17.8	В									

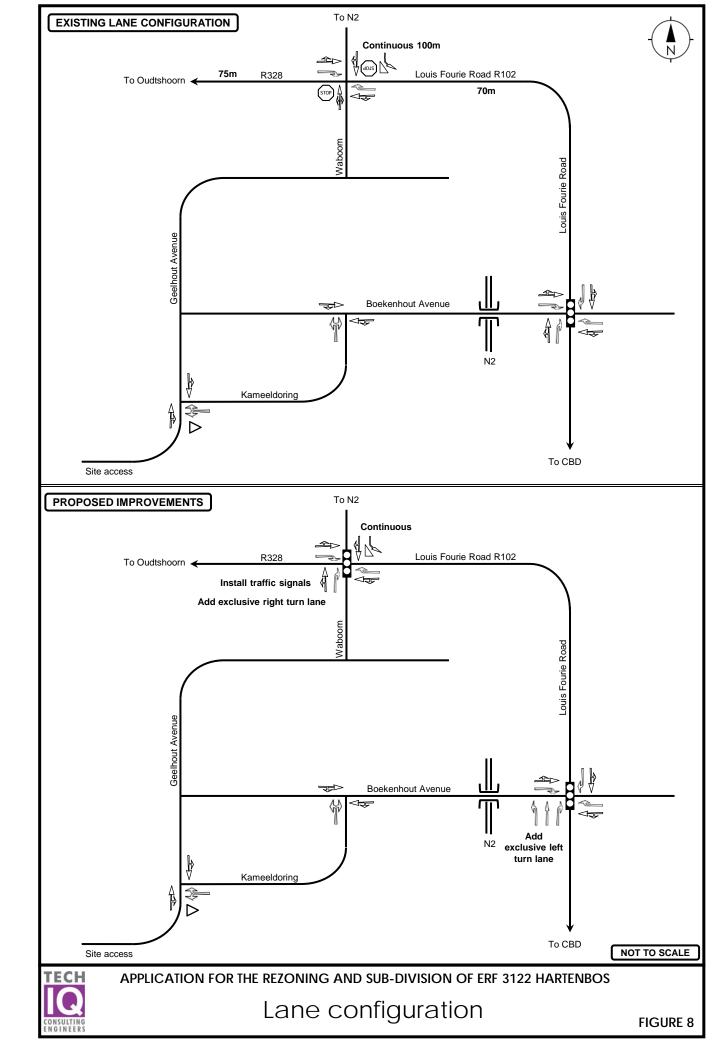
The results confirm that the road improvements that have been proposed can accommodate the Outeniquasbosch development, as well as the additional background growth and the proposed development on Erf 3122 Hartenbos.

4.5 Conclusion

Based on the capacity analysis for the 2026 horizon year, including background growth, latent rights and the proposed development on Erf 3122 Hartenbos, it is concluded that the existing road network can accommodate the 2026 horizon year total traffic demand, provided that the following road improvements are implemented:

i. Intersection of Louis Fourie Road and Boekenhout Avenue

An exclusive 60 metre left turn lane with 60 metre taper is required on the southern approach of Louis Fourie Road.


ii. Intersection of Louis Fourie Road (R102), R328 to Oudtshoorn, Waboom Street and R102 to Groot Brak

ITS recommended in 2018 (TIA for Outeniquasbosch development) that traffic signals be installed at the intersection and that an exclusive right turn lane be provided on Waboom Street. No further improvements are required to also accommodate the development of Erf 3122 Hartenbos.

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS

Figure 8 illustrates the lane configuration at intersections in the study area.

The conceptual road layout is illustrated on Figure 9.

The proposed development as illustrated on the Subdivision Plan (Figure 2) and conceptual road layout network (Figure 9) was assessed in terms of TMH16, Volume 2, *South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual* and salient aspects are discussed below.

5.1 Functional Road Network

The internal circulation system comprises Class U5 residential access streets.

i. Driveway connections

Care was taken to eliminate driveway connections at intersections, particularly in the vicinity of roundabouts and opposite T-junctions. Care should be taken in the preparation of building plans to locate property accesses outside the intersection area.

ii. Design speed

The design speed should be 40 km / h.

iii. Design vehicle

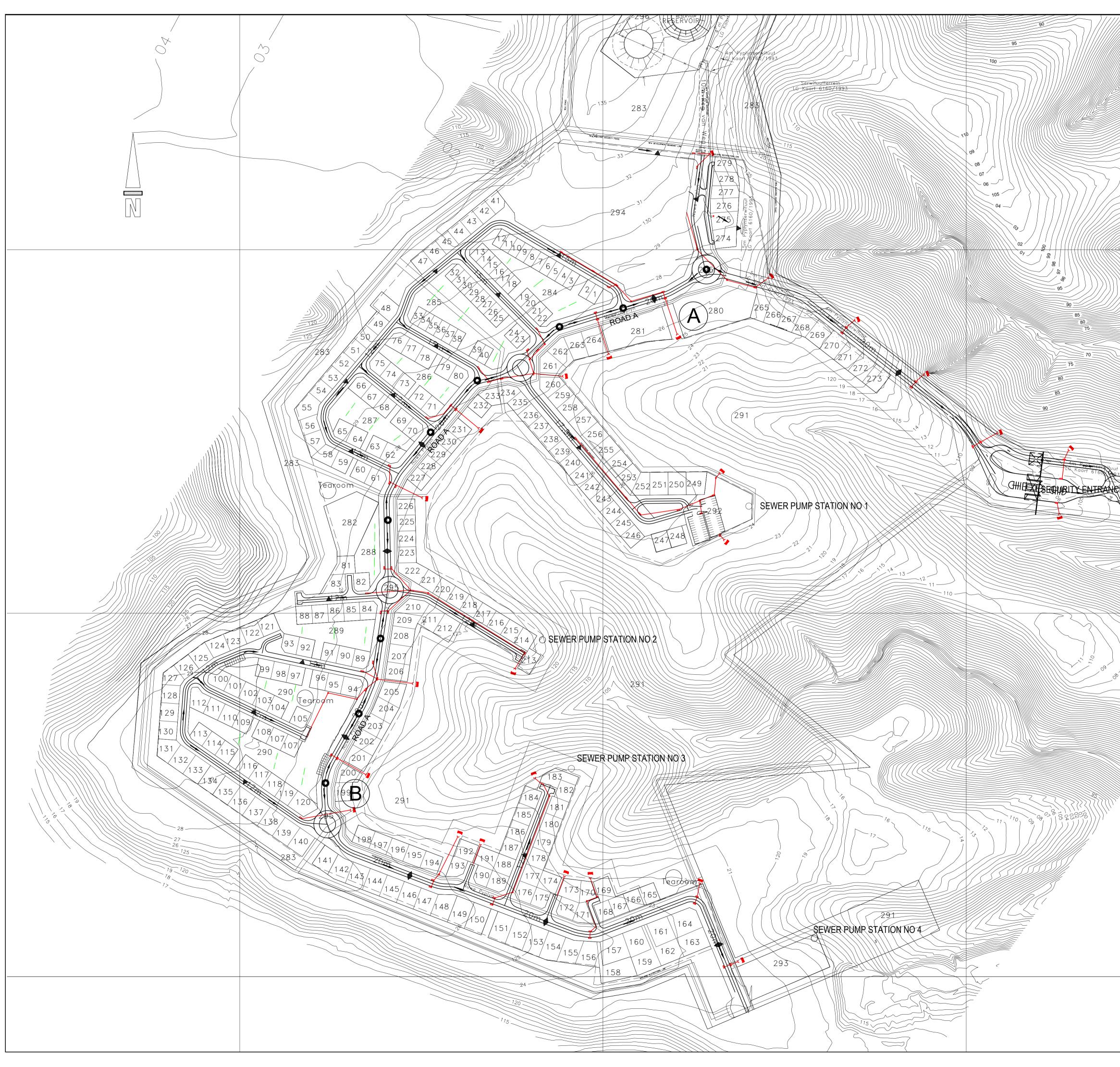
The design vehicle is a LDV with provision made for occasional use by a SU-truck. This will accommodate service vehicles, refuse collection vehicles, pantechnicons and emergency vehicles (fire engines).

5.2 Capacity Analysis

The capacity analysis confirmed that an acceptable level of service can be expected at intersections on the external road network identified by the Municipality for inclusion in the study area. Traffic volumes on the internal road network are low and no capacity analysis is required.

5.3 Accesses and Intersections

i. Access to the road network


All properties can be provided with access to the road network, subject to the location of access to properties opposite street junctions or close to roundabouts.

From a traffic engineering point of view, there is no requirement for an access road to Erven 274 to 279 opposite Erf 294 and it is recommended that the access road should be removed.

ii. U-turn facilities

U-turn facilities have been provided at all dead ends. Provision has also been made in the design of the access gate for U-turns if access to the estate is denied.

	LEGEND
	 STORMWATER PIPE KERB INLET STORMWATER OUTLET STORMWATER MANHOLE
	 ENERGY DISSIPATION / DETENTION STRUCTURE HIGH POINTS ON ROAD ROAD CROSS FALL
	 STORMWATER FLOW DIRECTION FLOW RETENTION CHANNELS RAINWATER STORAGE TANK WATER SHED
60	STORMWATER CATCHMENT AREA
e	
	REVISIONS NO. DATE INI. DESCRIPTION 0 05/05/2021 LJR ISSUE FOR APPROVAL
	LJR Civil Consultants cc DESIGN & DRAUGHTING ENGINEERING CONSULTANTS 2000/007738/23
	55 LOUIS TRICHARDT STREET PARKTOWN ESTATE CELL : 083 283 7540 PRETORIA TEL : 012 804 1514 0084 E-mail : ljr@ijr.co.za
	CLIENT HARTENBOS Garden Estate Natuur-Landgoed
	PROJECT HARTENBOS GARDEN ESTATE
	ROADS & STORMWATER LAYOUT PLAN
	DESIGN JL Roets Prof Reg No: 937005 DRAWN LJR DATE MAY 2021
FIGURE 9	PROJECT NUMBER COMPUTER NAME Hart Roads & Stormwater.dwg SCALE 1:2000 DRAWING NUMBER
	1704062/100 0

iii. Spacing

Intersection spacing in the development is sufficient given the very low expected traffic demand.

iv. Intersection control

Priority control is sufficient for all intersections, but roundabouts / traffic circles may be installed for the convenience of residents.

Traffic circles have the added advantage that they act as traffic calming devices.

v. Intersection angle

Care must be taken in the detail design of roads to ensure acceptable intersection angles.

vi. Topography

The development is limited to areas within the property where the topography is relatively flat.

vii. Road gradient

The maximum allowable road gradient is 10% with a maximum of 12% over short sections of no longer than 50m. Road gradients at intersections should not exceed 6%.

viii. Road reserve widths

Road reserves comply with the minimum width standards and requirements.

ix. Kerb return radii

Kerb return radii (bell-mouth) should be at least 8m.

5.4 Traffic Management

i. Environmental capacity

The expected trip generation of the development is less than the preferred environmental capacity for Class 5b urban residential access roads of 200 vehicles / hour.

ii. Speed calming

Most of the roads are short and would not require speed calming.

Traffic circles proposed at a number of intersections will contribute to traffic calming. Additional speed calming may be considered at 150m spacing to achieve an operating speed of 40 km/hour. Raised pedestrian crossings may be considered as traffic calming devices.

5.5 Pedestrian and Bicycle Facilities

Paved pedestrian walkways have been recommended on at least one side of all roads.

There is no need for demarcated or dedicated bicycle facilities in view of the low expected demand and low design speed on internal roads.

APPLICATION FOR THE REZONING AND SUB-DIVISION OF ERF 3122 HARTENBOS

5.6

Public transport services are expected to include the following:

- Minibus taxi vehicles that serve employees, visitors and some residents
- Meter taxis and Uber-type taxis-on-demand services.

The following public transport infrastructure should be considered:

- Minibus stop to load and off-load passengers as close as possible to all public facilities for the convenience of residents, particularly those with impaired mobility
- Minibus taxi drop-off and loading bay at the entrance gate. (No public transport lay-bys are required along the internal road network).

5.7 Parking Provision and Drop-off / Pick-Up Facilities

During 2018 the Municipality raised the issue of parking bay dimensions. The agreement that was reached with the Municipality is described below.

Parking should be provided according to the Town Planning Scheme and to the technical requirements of the Municipality, provided that a reduced parking ratio may be approved by the Municipality, based on a rational parking analysis.

Mossel Bay experiences an increased proportion of large LDVs. SUVs and recreational vehicles that require parking bays with larger dimensions that the standard parking bay dimensions stipulated in the Town Planning Scheme. The provision of parking shall comply with the following:

- The parking ratios specified in the Mossel Bay Municipality: Integrated Zoning Scheme By-Law will be applied to all land uses included in the development.
- Garages at residential developments will be constructed according to market demand and will typically accommodate the space requirements of the current vehicle population.
- Paved parking areas in front of garages will be 3.0m wide per vehicle, i.e. 3.0m for single and 6.0m for double garages
- At non-residential uses, 30 percent of all parking spaces, excluding accessible parking bays, will be 2.7m wide and 6.0m in length.

5.8 Deliveries, Goods Transport and Refuse Collection

The design of roads must provide for the manoeuvres of regular refuse collection services, particularly turning facilities at cul-de-sac streets, as well as for the occasional use of SU trucks.

Parking and loading bays for goods vehicles must be provided according to the requirements of the Town Planning Scheme, but particular attention must be given to the specific requirements of the medical clinic, such as delivery of gas and diesel for emergency generators.

5.9 Access Control

The peak directional traffic demand is 74 inbound vehicles per hour (PM peak hour) and 89 vehicles per hour outbound (AM peak hour).The expected number of vehicles at access control gates during peak hours is tabulated below.

DESCRIPTION		INBOUND	OUTBOUND			
Peak hour volume		74	80			
Peak hour factor		0.75 0.75				
Flow rate (vehicles / hour		99	119			
Service time (seconds)		12	12			
Number of gates		1	1			
Probability P(x≤n)	n = 0	0.67	0.64			
	n = 1	0.89	0.87			
	n = 2	0.96	0.96			
	n = 3	0.99	0.98			

The access gate design should therefore provide the following:

- One boom gate per direction with a queue area for at least two (2) vehicles
- Waiting area for visitors, while permission to enter the estate is being confirmed, preferably in the form of an additional inbound lane and boom gate
- Facility for heavy vehicles (height) and emergency vehicles (4.5m minimum width).

6. CONCLUSION AND RECOMMENDATION

A Traffic Impact Assessment report (Tech IQ Consulting Engineers, Project No J012/617/2, May 2018) for the development of Erf 3122 Hartenbos was accepted by the Mossel Bay Municipality. The intended land use rights on the property have been slightly amended, but the layout of the development has remained practically the same from a traffic engineering point of view. The trip generation of the proposed development has remained practically unchanged (144 versus 148 peak hour trips).

Based on a capacity analysis of the proposed development for a 2026 horizon year, including latent land use rights, background traffic growth and the traffic generated by the proposed development on Erf 3122 Hartenbos, it is concluded that the existing external road network can accommodate the projected 2026 traffic demand, provided that the following road improvements should be implemented:

- i. A 60m exclusive left turn lane with 60m taper on the southern approach of Louis Fourie Road at the intersection of Louis Fourie Road and Boekenhout Avenue. This left turn lane serves both Erf 3122 and the adjacent Renosterbos development
- ii. Installation of traffic signals and the provision of an exclusive right turn lane on Waboom Street at the intersection of Waboom Street, Louis Fourie Road, the R328 to Oudtshoorn and the R102 to Groot Brak. This improvement was recommended by ITS in 2018 in the TIA for the Outeniquasbosch development.

A Site Traffic Assessment of the proposed Sub-Division Plan and Draft Roads and Stormwater Plan indicates that traffic engineering requirements and standards can be achieved, but that the following aspects need to be addressed in the detail design of the road network:

- Design of roundabouts
- Property access in the vicinity of roundabouts and opposite T-junctions
- Design of the road between Erf 294 and Erven 274 to 279, where it is recommended that the separate access road to the latter should be omitted.

From a traffic engineering point of view it is recommended that:

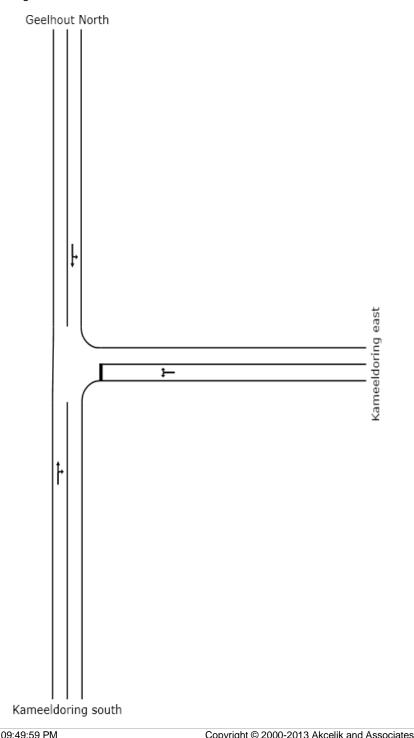
- 1. The application for the sub-division of Erf 3122 Hartenbos should be granted.
- 2. The contribution of the applicant to the provision at an exclusive left turn lane on the southern approach of Louis Fourie Road at its intersection with Boekenhout Avenue should be addressed in the Engineering Service Agreement.
- 3. The geometric design of the road network should be to the satisfaction of the Mossel Bay Municipality.
- 4. Attention be given to access to individual properties and provision of parking when building plans are submitted.

ANNEXURE A

Calculations

INTERSECTION	APPROACH	TURN	COUN	ITS	GR	OWTH	LATI	ENT RIG	HTS	2026 BG	TRAFFI	C ASSIGN	IMENT	2026
			Volume	Year	-	Volume	Otqa	Reno	River		%In	%Out	Trips	TOTAL
1. Geelhout /	South:	Straight	2	2021	3.0%	0				2		72	58	6
Kameeldoring	Kameeldoring	Right	1	2021	3.0%	0				1		28	22	2
-	East:	Left	2	2021	3.0%	0				2	28		17	1
	Kameeldoring	Right	3	2021	3.0%	0				3			0	
	North:	Left	7	2021	3.0%	1				8			0	
	Geelhout	Straight	1	2021	3.0%	0				1	72		42	4
2. Boekenhout /	South:	Left	9	2017	3.0%	3		10		22			0	
Kameel-doring	Kameeldoring	Right	165	2017	3.0%	50		145		360		28	22	38
	East:	Left	66	2017	3.0%	20		50		136	28		17	15
	Boekenhout	Straight	83	2017	3.0%	25				108	27		16	12
	West:	Straight	177	2017	3.0%	54				231		27	22	25
	Boekenhout	Right	1	2017	3.0%	0		5		6			0	
3. Boekenhout /	South: Louis	Left	133	2016	4.0%	64		35		232	40		24	25
Louis Fourie	Fourie	Straight	391	2016	4.0%	188			15	594			0	59
		Right	18	2016	4.0%	9				27			0	
	East:	Left	18	2016	4.0%	9				27			0	
	Boekenhout	Straight	7	2016	4.0%	3				10			0	:
		Right	5	2016	4.0%	2				7			0	
	North: Louis	Left	16	2016	4.0%	8				24			0	
	Fourie	Straight	332	2016	4.0%	159			45	536			0	53
		Right	72	2016	4.0%	35		20		127	15		9	13
	West:	Left	146	2016	4.0%	70		55		271		15	12	23
	Boekenhout	Straight	5	2016	4.0%	2				7			0	
		Right	226	2016	4.0%	109		90		425		40	32	45
4. R328 Louis	South: Waboom	Left	15	2018	4.0%	6				21		5	4	
ourie /		Straight	51	2018	4.0%	19				70		35	28	9
Waboom		Right	46	2018	4.0%	17				63			0	(
	East: Louis	Left	13	2018	4.0%	5				18			0	:
	Fourie (R102)	Straight	128	2018	4.0%	47			5	180			0	18
		Right	189	2018	4.0%	70	99		20	378			0	3
	North: N2 /	Left	166	2018	4.0%	61	180		10	417			0	4
	R102	Straight	25	2018	4.0%	9				34	35		21	!
		Right	68	2018	4.0%	25	26			119			0	1
	West: Louis	Left	99	2018	4.0%	36	14			149			0	14
	Fourie (R328	Straight	152	2018	4.0%	56				208			0	2
	Oudtshoorn)	Right	11	2018	4.0%	4				15	5		3	:

INITEDCECTION	APPROACH	TURN	COUN	ιтς	CD.	OWTH	1 1 1	ENT RIG	птс	2026 BG		C ASSIGN		2026
INTERSECTION	APPROACH	TURN	Volume	Year	Rate	Volume	Otqa	Reno	River	2026 BG	%In	%Out	Trips	TOTAL
1 Caalbaut /	Cauth	Straight	volume 1	2021	3.0%	0	Οιγα	Keno	RIVEI	1	/0111	72 %	50	TUTAL
	South:		1	2021	3.0%	0				1		28	20	
0	Kameeldoring East:	Right Left	1	2021	3.0%	0				1	28	28	20	
						0				9	28			
	Kameeldoring North:	Right Left	8	2021	3.0% 3.0%	1				9			0	
	Geelhout		3	2021 2021	3.0%	0				3	72		53	
	South:	Straight Left	2	2021	3.0%	1		5		8	72		55	
		Right	2 75	2017	3.0%	23		5 75		8 173		28	20	19
	Kameeldoring East:	Left	163	2017	3.0%	50		145		358	28	20	20	3
	Boekenhout	Straight	105	2017	3.0%	47		145		202	20		21	22
	West:		88	2017	3.0%	27				115	27	27	19	13
	Boekenhout	Straight Right	8	2017	3.0%	27		10		20		27	19	1:
3. Boekenhout /		Left	238	2017	4.0%	101		90		429	40		30	45
			238 508	2017	4.0%	215		90	45	429 768	40		30 0	
East:	Fourie	Straight Right	21	2017	4.0%	215			45	30			0	
	Eact:	Left		2017	4.0%	14				48			0	
	Boekenhout	Straight	2	2017	4.0%	14				48			0	
	boekennout	Right	24	2017	4.0%	10				34			0	
	North: Louis	Left	18	2017	4.0%	8				26			0	
	Fourie	Straight	383	2017	4.0%	162			15	560			0	56
	roune	Right	113	2017	4.0%	48		55	15	216	15		11	2
•	West:	Left	113	2017	4.0%	48		25		180	15	15	11	1
	Boekenhout	Straight	2	2017	4.0%			25		3		15	0	1.
	bockennout	Right	152	2017	4.0%	64		45		261		40	28	28
4. R328 Louis	South: Waboom	-	6	2017	4.0%	2		-5		8		5	4	
Fourie /		Straight	17	2018	4.0%	6				23		35	25	
Waboom		Right	62	2018	4.0%	23				85			0	5
	East: Louis	Left	89	2018	4.0%	33				122			0	1
	Fourie (R102)	Straight	153	2018	4.0%	56				209			0	20
	roune (nioz)	Right	178	2018	4.0%	66	157		10	411			0	4
	North: N2 /	Left	170	2018	4.0%	63	90		20	343			0	34
	R102	Straight	25	2018	4.0%	9				34	35		26	
		Right	64	2018	4.0%	24	13			101			0	10
	West: Louis	Left	61	2018	4.0%	22	22			101			0	10
	Fourie (R328	Straight	156	2018	4.0%	57			5	218			0	2
	Oudtshoorn)	Right	14	2018	4.0%	5				19	5		4	


ANNEXURE B

SIDRA Results

SITE LAYOUT

Site: AM

Geelhout / Kameeldoring

Created: 10 June 2021 09:49:59 PM SIDRA INTERSECTION 6.0.1.3703

Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Geelhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: AM

Geelhout / Kameeldoring Stop (Two-Way)

Move	ment Perf	ormance	- Vehi	icles							
Mov IE	O ODMo	Demand	Flows	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Kameeldor	ing south									
2	T1	67	0.0	0.050	3.1	LOS A	0.2	1.7	0.16	0.31	47.8
3	R2	26	4.0	0.050	3.1	LOS A	0.2	1.7	0.16	0.31	47.8
Approa	ach	92	1.1	0.050	3.1	NA	0.2	1.7	0.16	0.31	47.8
East: I	Kameeldorir	ng east									
4	L2	21	4.0	0.011	13.0	LOS B	0.1	0.8	0.23	0.82	41.6
6	R2	3	0.0	0.011	13.0	LOS B	0.1	0.8	0.23	0.82	41.6
Approa	ach	24	3.5	0.011	13.0	LOS B	0.1	0.8	0.23	0.82	41.6
North:	Geelhout N	lorth									
7	L2	9	0.0	0.029	1.3	LOS A	0.0	0.0	0.00	0.15	57.9
8	T1	48	0.0	0.029	1.3	LOS A	0.0	0.0	0.00	0.15	57.9
Approa	ach	57	0.0	0.029	1.3	NA	0.0	0.0	0.00	0.15	57.9
All Vel	hicles	173	1.1	0.050	4.4	NA	0.2	1.7	0.12	0.33	50.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: 10 June 2021 09:50:04 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Geelhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: PM

Boekenhout / Kameeldoring Stop (Two-Way)

Move	ment Perf	ormance	- Vehi	cles							
Mov IE	D ODMo	Demand	Flows	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Kameldorir	ng south									
2	T1	57	0.0	0.043	3.3	LOS A	0.2	1.5	0.18	0.31	47.0
3	R2	23	4.0	0.043	3.3	LOS A	0.2	1.5	0.18	0.31	47.0
Approa	ach	80	1.2	0.043	3.3	NA	0.2	1.5	0.18	0.31	47.0
East: I	Kameldoring	g east									
4	L2	24	4.0	0.017	12.9	LOS B	0.1	1.1	0.27	0.81	41.6
6	R2	10	0.0	0.017	12.9	LOS B	0.1	1.1	0.27	0.81	41.6
Approa	ach	34	2.8	0.017	12.9	LOS B	0.1	1.1	0.27	0.81	41.6
North:	Geelhout N	lorth									
7	L2	9	0.0	0.037	1.0	LOS A	0.0	0.0	0.00	0.13	58.4
8	T1	62	0.0	0.037	1.0	LOS A	0.0	0.0	0.00	0.13	58.4
Approa	ach	71	0.0	0.037	1.0	NA	0.0	0.0	0.00	0.13	58.4
All Vel	hicles	186	1.0	0.043	4.6	NA	0.2	1.5	0.13	0.33	51.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

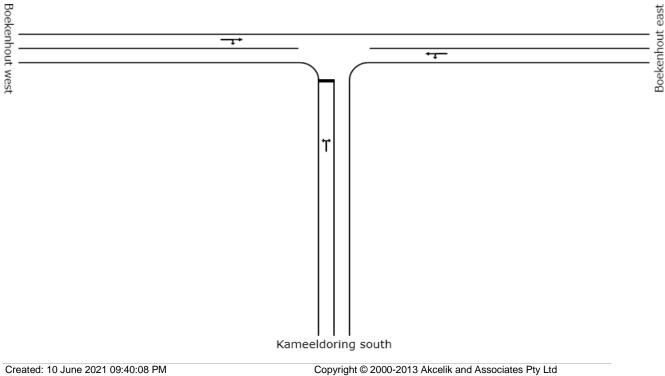
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Processed: 02 June 2021 08:31:12 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Geelhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

Site: AM

Boekenhout / Kameeldoring

Created: 10 June 2021 09:40:08 PM SIDRA INTERSECTION 6.0.1.3703

www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Boekenhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: AM

Boekenhout / Kameeldoring Stop (Two-Way)

Move	Novement Performance - Vehicles												
Mov IE	ODMo	Demand	Flows	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South:	Kameeldor	ing south											
1	L2	24	4.0	0.336	15.3	LOS C	2.2	16.1	0.60	0.89	34.2		
3	R2	424	4.0	0.336	15.3	LOS C	2.2	16.1	0.60	0.89	34.2		
Approa	ach	449	4.0	0.336	15.3	LOS C	2.2	16.1	0.60	0.89	34.2		
East: E	Boekenhout	east											
4	L2	170	4.0	0.188	5.7	LOS A	0.0	0.0	0.00	0.51	50.3		
5	T1	138	4.0	0.188	5.7	LOS A	0.0	0.0	0.00	0.51	50.3		
Approa	ach	308	4.0	0.188	5.7	NA	0.0	0.0	0.00	0.51	50.3		
West:	Boekenhou	t west											
11	T1	281	4.0	0.163	1.2	LOS A	0.9	6.8	0.45	0.03	47.8		
12	R2	7	4.0	0.163	1.2	LOS A	0.9	6.8	0.45	0.03	47.8		
Approa	ach	288	4.0	0.163	1.2	NA	0.9	6.8	0.45	0.03	47.8		
All Vel	nicles	1044	4.0	0.336	8.6	NA	2.2	16.1	0.38	0.54	42.9		

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: 10 June 2021 09:40:09 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Boekenhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: PM

Boekenhout / Kameeldoring Stop (Two-Way)

Move	ement Perf	ormance	- Vehi	cles							
Mov II	D ODMo	Demand	Flows	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Kameeldor	ing south									
1	L2	9	4.0	0.196	15.8	LOS C	1.1	7.8	0.64	0.91	33.8
3	R2	214	4.0	0.196	15.8	LOS C	1.1	7.8	0.64	0.91	33.8
Appro	ach	223	4.0	0.196	15.8	LOS C	1.1	7.8	0.64	0.91	33.8
East: I	Boekenhout	east									
4	L2	421	4.0	0.410	6.5	LOS A	0.0	0.0	0.00	0.55	49.1
5	T1	247	4.0	0.410	6.5	LOS A	0.0	0.0	0.00	0.55	49.1
Appro	ach	668	4.0	0.410	6.5	NA	0.0	0.0	0.00	0.55	49.1
West:	Boekenhou	t west									
11	T1	149	4.0	0.112	5.1	LOS A	0.9	6.4	0.62	0.15	43.7
12	R2	22	4.0	0.112	5.1	LOS A	0.9	6.4	0.62	0.15	43.7
Appro	ach	171	4.0	0.112	5.1	NA	0.9	6.4	0.62	0.15	43.7
All Ve	hicles	1062	4.0	0.410	8.2	NA	1.1	7.8	0.23	0.56	45.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

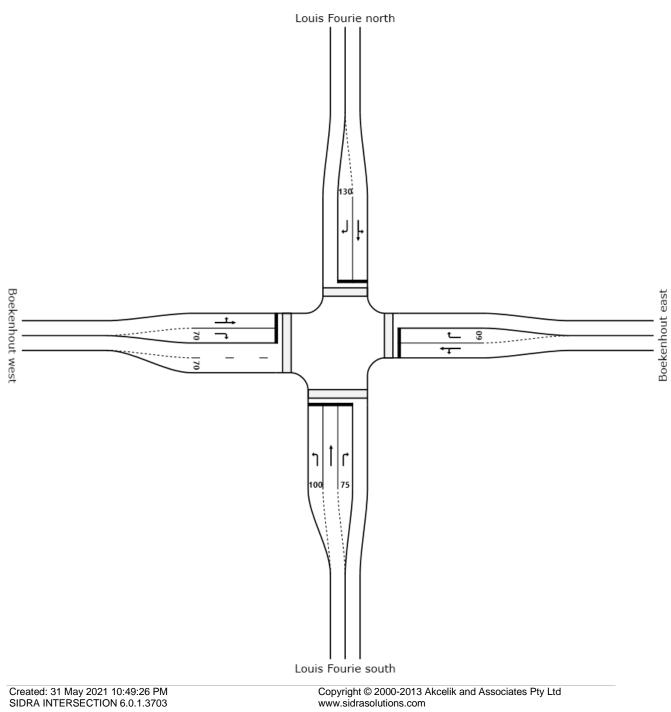
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: 10 June 2021 09:41:24 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com


Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Boekenhout_Kameeldoring.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

SITE LAYOUT

Site: AM peak hour

Boekenhout / Louis Fourie (R102)

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Louis Fourie_Boekenhout.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY

Site: AM peak hour

Boekenhout / Louis Fourie (R102) Signals - Fixed Time Cycle Time = 55 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
	D ODMo			eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Louis Four	rie south									
1	L2	269	2.0	0.284	13.9	LOS B	2.3	16.7	0.59	0.78	39.8
2	T1	625	2.0	0.862	25.6	LOS C	19.5	138.9	0.99	1.04	27.9
3	R2	28	2.0	0.149	37.4	LOS D	0.8	5.4	0.97	0.70	25.0
Appro	ach	923	2.0	0.862	22.5	LOS C	19.5	138.9	0.87	0.95	30.5
East:	Boekenhout	teast									
4	L2	28	2.0	0.147	30.4	LOS C	1.0	6.9	0.91	0.72	21.3
5	T1	11	2.0	0.147	30.4	LOS C	1.0	6.9	0.91	0.72	21.3
6	R2	7	2.0	0.028	32.3	LOS C	0.2	1.3	0.88	0.67	21.1
Appro	ach	46	2.0	0.147	30.7	LOS C	1.0	6.9	0.90	0.71	21.3
North:	Louis Four	ie north									
7	L2	25	2.0	0.572	9.4	LOS A	10.6	75.3	0.71	0.65	40.5
8	T1	564	2.0	0.572	9.4	LOS A	10.6	75.3	0.71	0.65	40.5
9	R2	143	2.0	0.159	17.2	LOS B	2.0	14.2	0.54	0.77	36.8
Appro	ach	733	2.0	0.572	10.9	LOS B	10.6	75.3	0.68	0.67	39.7
West:	Boekenhou	it west									
10	L2	298	2.0	0.319	17.0	LOS B	4.6	32.4	0.59	0.79	36.8
11	T1	7	2.0	0.319	17.0	LOS B	4.6	32.4	0.59	0.79	36.8
12	R2	481	2.0	0.861	37.2	LOS D	15.4	109.8	1.00	1.00	25.1
Appro	ach	786	2.0	0.861	29.4	LOS C	15.4	109.8	0.84	0.92	28.6
All Ve	hicles	2488	2.0	0.862	21.4	LOS C	19.5	138.9	0.81	0.85	31.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance -	Pedestria	ns					
Mov ID	Description	Demand Flow	Average Delay		Average Bac Pedestrian	k of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	5	21.8	LOS C	0.0	0.0	0.89	0.89
P2	Across E approach	5	17.6	LOS B	0.0	0.0	0.80	0.80
P3	Across N approach	5	19.2	LOS B	0.0	0.0	0.84	0.84
P4	Across W approach	5	20.1	LOS C	0.0	0.0	0.85	0.85
All Ped	lestrians	21	19.7	LOS B			0.85	0.85

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 02 June 2021 08:35:20 PM SIDRA INTERSECTION 6.0.1.3703 Copyright O 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Louis Fourie_Boekenhout.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: PM peak hour

Boekenhout / Louis Fourie (R102)

Signals - Fixed Time Cycle Time = 71 seconds (User-Given Phase Times)

Movement Performance - Vehicles

Movement Performance - Vehicles												
Mov II	D ODMo	Demand	Flows D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	: Louis Four	ie south										
1	L2	483	2.0	0.432	13.8	LOS B	5.3	37.6	0.55	0.79	39.9	
2	T1	808	2.0	0.822	20.7	LOS C	26.8	190.9	0.92	0.90	30.8	
3	R2	32	2.0	0.214	46.7	LOS D	1.1	8.0	0.99	0.71	21.7	
Appro	ach	1323	2.0	0.822	18.8	LOS B	26.8	190.9	0.79	0.86	33.2	
East:	Boekenhout	east										
4	L2	51	2.0	0.192	38.4	LOS D	1.7	12.0	0.91	0.75	18.7	
5	T1	3	2.0	0.192	38.4	LOS D	1.7	12.0	0.91	0.75	18.7	
6	R2	36	2.0	0.242	45.1	LOS D	1.2	8.9	0.97	0.73	16.7	
Appro	ach	89	2.0	0.242	41.1	LOS D	1.7	12.0	0.93	0.74	17.8	
North:	Louis Fouri	e north										
7	L2	27	2.0	0.515	8.0	LOS A	11.6	82.5	0.59	0.55	42.7	
8	T1	589	2.0	0.515	8.0	LOS A	11.6	82.5	0.59	0.55	42.7	
9	R2	239	2.0	0.226	16.3	LOS B	3.6	26.0	0.47	0.78	37.5	
Appro	ach	856	2.0	0.515	10.3	LOS B	11.6	82.5	0.55	0.61	41.1	
West:	Boekenhou	t west										
10	L2	201	2.0	0.264	23.4	LOS C	4.5	32.3	0.67	0.79	32.1	
11	T1	3	2.0	0.264	23.4	LOS C	4.5	32.3	0.67	0.79	32.1	
12	R2	304	2.0	0.528	34.6	LOS C	9.3	65.9	0.91	0.82	26.2	
Appro	ach	508	2.0	0.528	30.1	LOS C	9.3	65.9	0.82	0.81	28.3	
All Ve	hicles	2777	2.0	0.822	19.0	LOS B	26.8	190.9	0.73	0.77	33.5	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

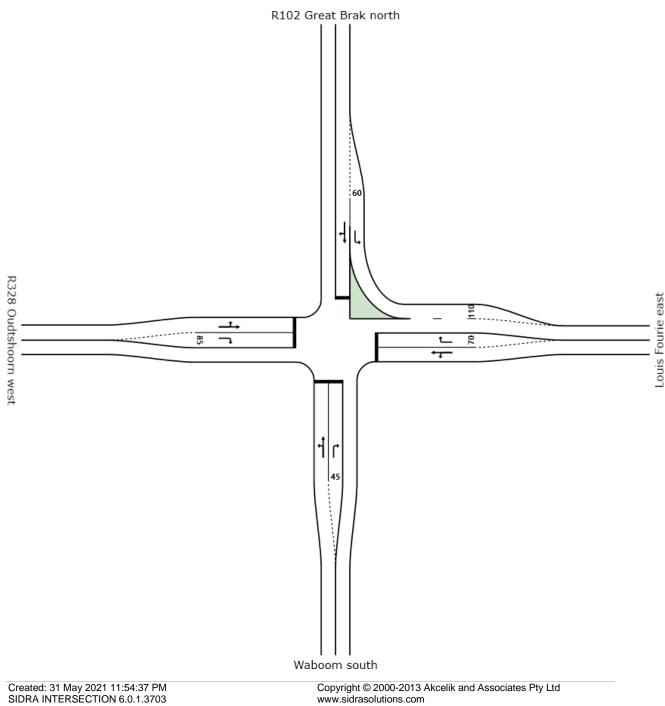
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay		Average Bac Pedestrian	k of Queue Distance	Prop. Queued	Effective Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	Across S approach	5	28.9	LOS C	0.0	0.0	0.90	0.90					
P2	Across E approach	5	14.3	LOS B	0.0	0.0	0.63	0.63					
P3	Across N approach	5	26.2	LOS C	0.0	0.0	0.86	0.86					
P4	Across W approach	5	16.2	LOS B	0.0	0.0	0.68	0.68					
All Ped	lestrians	21	21.4	LOS C			0.77	0.77					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: 02 June 2021 08:41:45 PM SIDRA INTERSECTION 6.0.1.3703


Copyright O 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\Louis Fourie_Boekenhout.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

SITE LAYOUT Site: AM SIGNAL

R102 / R328 (Louis Fourie / Waboom)

www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021/SIDRA/6/R102_R328.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: AM SIGNAL

R102 / R328 (Louis Fourie / Waboom) Signals - Fixed Time Cycle Time = 40 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
				Deg. Satn	Average	Level of	95% Back	of Outpute	Prop.	Effective	Average
		Total	HV	Jey. Sam	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c		0011100	venicies		Queucu		km/h
South	Waboom s		-70	V/C	Sec		ven	m		per veh	K11/11
30utri.	L2	26	5.0	0.406	19.2	LOS B	2.4	17.7	0.93	0.75	26.1
<u> </u>	 T1	103		0.406	-	LOS B					
2			5.0		19.2		2.4	17.7	0.93	0.75	26.1
3	R2	66	5.0	0.226	28.2	LOS C	1.2	8.9	0.92	0.75	23.5
Approa		196	5.0	0.406	22.2	LOS C	2.4	17.7	0.92	0.75	25.1
East: L	ouis Fourie										
4	L2	19	5.0	0.217	6.6	LOS A	2.2	16.2	0.57	0.53	44.7
5	T1	189	5.0	0.217	6.6	LOS A	2.2	16.2	0.57	0.53	44.7
6	R2	398	5.0	0.805	23.5	LOS C	6.5	47.4	0.99	0.94	32.6
Approa	ich	606	5.0	0.805	17.7	LOS B	6.5	47.4	0.84	0.80	36.0
North:	R102 Grea	t Brak north	า								
7	L2	439	5.0	0.265	9.6	LOS A	0.0	0.0	0.00	0.64	45.8
8	T1	58	5.0	0.772	29.5	LOS C	4.1	30.2	1.00	0.93	27.9
9	R2	125	5.0	0.772	29.5	LOS C	4.1	30.2	1.00	0.93	27.9
Approa	ach	622	5.0	0.772	15.4	LOS B	4.1	30.2	0.29	0.72	38.6
West: I	R328 Oudt	shoorn west	t								
10	L2	157	5.0	0.751	21.8	LOS C	7.8	56.8	0.97	0.92	31.3
11	T1	219	5.0	0.751	21.8	LOS C	7.8	56.8	0.97	0.92	31.3
12	R2	19	5.0	0.097	31.0	LOS C	0.4	2.7	0.96	0.68	28.2
Approa	ach	395	5.0	0.751	22.3	LOS C	7.8	56.8	0.97	0.91	31.1
All Veh		1819	5.0	0.805	18.4	LOS B	7.8	56.8	0.69	0.79	34.5
		-	-				-				

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: 02 June 2021 08:47:01 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\R102_R328.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

MOVEMENT SUMMARY Site: PM SIGNAL

R102 / R328 (Louis Fourie / Waboom) Signals - Fixed Time Cycle Time = 40 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
) ODMo			Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	V	Total	HV	ocy. Oan	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Waboom s										
1	L2	12	5.0	0.227	19.4	LOS B	1.2	8.4	0.92	0.71	25.9
2	T1	51	5.0	0.227	19.4	LOS B	1.2	8.4	0.92	0.71	25.9
3	R2	89	5.0	0.357	29.7	LOS C	1.7	12.8	0.95	0.76	22.7
Approa	ach	152	5.0	0.357	25.5	LOS C	1.7	12.8	0.94	0.74	23.9
East: L	ouis Fourie	east									
4	L2	128	5.0	0.351	9.5	LOS A	3.9	28.3	0.59	0.67	42.2
5	T1	220	5.0	0.351	9.5	LOS A	3.9	28.3	0.59	0.67	42.2
6	R2	433	5.0	0.758	21.2	LOS C	6.5	47.1	0.95	0.91	34.3
Approa	ach	781	5.0	0.758	16.0	LOS B	6.5	47.1	0.79	0.80	37.4
North:	R102 Grea	it Brak north	า								
7	L2	361	5.0	0.218	9.6	LOS A	0.0	0.0	0.00	0.64	45.8
8	T1	63	5.0	0.721	27.8	LOS C	3.7	27.0	1.00	0.89	28.6
9	R2	106	5.0	0.721	27.8	LOS C	3.7	27.0	1.00	0.89	28.6
Approa	ach	531	5.0	0.721	15.4	LOS B	3.7	27.0	0.32	0.72	38.5
West:	R328 Oudt	shoorn wes	t								
10	L2	111	5.0	0.744	21.4	LOS C	7.1	51.6	0.98	0.92	31.2
11	T1	229	5.0	0.744	21.4	LOS C	7.1	51.6	0.98	0.92	31.2
12	R2	23	5.0	0.119	31.0	LOS C	0.5	3.3	0.96	0.69	28.2
Approa	ach	363	5.0	0.744	22.0	LOS C	7.1	51.6	0.97	0.90	31.0
All Veh	nicles	1826	5.0	0.758	17.8	LOS B	7.1	51.6	0.70	0.79	35.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: 02 June 2021 08:49:59 PM SIDRA INTERSECTION 6.0.1.3703 Copyright © 2000-2013 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Users\User\OneDrive - 101 IT (PTY) LTD\SERVER\WORK DOCUMENTS\Projects\J012 627-4 Hartebos Heuwels Revision 2021\SIDRA\6\R102_R328.sip6 8001570, TECH IQ CONSULTING ENGINEERS, PLUS / 1PC

